Advertisement

Post-resuscitation Care of the Depressed Newborn

  • Stephany M. Guiles
  • Jay P. Goldsmith
Chapter

Abstract

This chapter will review an evidence-based approach to the post-resuscitation care of the depressed newborn. There is a broad differential for neonatal encephalopathy, including hypoxic-ischemic encephalopathy (HIE). Standard protocols are used to identify encephalopathic newborns that have HIE and qualify for its time-sensitive treatment, therapeutic hypothermia. In order for therapeutic hypothermia to be effective, it should be initiated within 6 h of birth. Due to this time constraint, it is vital for the practicing physician to have a standard approach to the diagnosis and stabilization of the depressed newborn. The role of umbilical cord blood gas analysis in the evaluation of the fetal state prior to delivery will be discussed to illustrate how it can serve to guide management. Alternative laboratory evaluations to be considered if umbilical cord gases are not available will also be discussed. The physical exam of the depressed newborn, an essential component of the diagnosis of encephalopathy, will also be reviewed.

Keywords

Newborn Encephalopathy Asphyxia Therapeutic hypothermia Umbilical cord blood gas 

Notes

Conflict of Interest

Both authors declare they have no conflicts of interest with regard to the content of this manuscript.

References

  1. 1.
    Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–84.CrossRefGoogle Scholar
  2. 2.
    Shankaran S. Therapeutic hypothermia for neonatal encephalopathy. Curr Treat Options Neurol. 2012;14(6):608–19.CrossRefPubMedGoogle Scholar
  3. 3.
    Nageotte MP. Intrapartum fetal surveillance. In: Creasy RK, Resnik R, editors. Creasy & Resnik’s maternal-fetal medicine principles and practice. 7th ed. Philadelphia: Saunders; 2014. p. 488–506.Google Scholar
  4. 4.
    Armstrong L, Stenson BJ. Use of umbilical cord blood gas analysis in the assessment of the newborn. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F430–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Blickstein I, Green T. Umbilical cord blood gases. Clin Perinatol. 2007;34(3):451–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Higgins C. Umbilical-cord blood gas analysis Bronshoj. Denmark: Radiometer Medical ApS; 2014.Google Scholar
  7. 7.
    Thorp JA, Rushing RS. Umbilical cord blood gas analysis. Obstet Gynecol Clin N Am. 1999;26(4):695–709.CrossRefGoogle Scholar
  8. 8.
    Malin GL, Morris RK, Khan KS. Strength of association between umbilical cord pH and perinatal and long term outcomes: systematic review and meta-analysis. BMJ. 2010;340:c1471.CrossRefPubMedGoogle Scholar
  9. 9.
    Johnson JW, Richards DS. The etiology of fetal acidosis as determined by umbilical cord acid-base studies. Am J Obstet Gynecol. 1997;177(2):274–80. discussion 80-2CrossRefPubMedGoogle Scholar
  10. 10.
    Pomerance J. Interpreting umbilical cord gases. 2nd ed. California: BNMG; 2012; (cordgases.com).Google Scholar
  11. 11.
    Westgate J, Garibaldi JM, Greene KR. Umbilical cord blood gas analysis at delivery: a time for quality data. Br J Obstet Gynaecol. 1994;101(12):1054–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Cantu J, Szychowski JM, Li X, Biggio J, Edwards RK, Andrews W, et al. Predicting fetal acidemia using umbilical venous cord gas parameters. Obstet Gynecol. 2014;124(5):926–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Armstrong L, Stenson B. Effect of delayed sampling on umbilical cord arterial and venous lactate and blood gases in clamped and unclamped vessels. Arch Dis Child Fetal Neonatal Ed. 2006;91(5):F342–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Practice CoO. Committee opinion no. 684: delayed umbilical cord clamping after birth. Obstet Gynecol. 2017;129(1):e5–e10.CrossRefGoogle Scholar
  15. 15.
    Weiner GM, Zaichkin J, Kattwinkel J. Textbook of neonatal resuscitation. 7th ed. Elk Grove Village: American Academy of Pediatrics, American Heart Association; 2016. XiiGoogle Scholar
  16. 16.
    Valero J, Desantes D, Perales-Puchalt A, Rubio J, Diago Almela VJ, Perales A. Effect of delayed umbilical cord clamping on blood gas analysis. Eur J Obstet Gynecol Reprod Biol. 2012;162(1):21–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Wiberg N, Källén K, Olofsson P. Delayed umbilical cord clamping at birth has effects on arterial and venous blood gases and lactate concentrations. BJOG. 2008;115(6):697–703.CrossRefPubMedGoogle Scholar
  18. 18.
    WHO. Guideline: delayed umbilical cord clamping for improved maternal and infant health and nutrition outcomes. Geneva: World Health Organization; 2014.Google Scholar
  19. 19.
    Liston R, Sawchuck D, Young D, Canada SoOaGo, Program BCPH. Fetal health surveillance: antepartum and intrapartum consensus guideline. J Obstet Gynaecol Can. 2007;29(9 Suppl 4):S3–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Pomerance J. Umbilical cord blood gases casebook. Interpreting umbilical cord blood gases, V. J Perinatol. 1999;19(6 Pt 1):466–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Pomerance J. Umbilical cord blood gases casebook. Interpreting umbilical cord blood gases, VII. J Perinatol. 2000;20(5):338–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Allanson ER, Waqar T, White C, Tunçalp Ö, Dickinson JE. Umbilical lactate as a measure of acidosis and predictor of neonatal risk: a systematic review. BJOG. 2017;124(4):584–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Shah S, Tracy M, Smyth J. Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J Perinatol. 2004;24(1):16–20.CrossRefPubMedGoogle Scholar
  24. 24.
    King TA, Jackson GL, Josey AS, Vedro DA, Hawkins H, Burton KM, et al. The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J Pediatr. 1998;132(4):624–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Hafström M, Ehnberg S, Blad S, Norén H, Renman C, Rosén KG, et al. Developmental outcome at 6.5 years after acidosis in term newborns: a population-based study. Pediatrics. 2012;129(6):e1501–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696–705.CrossRefPubMedGoogle Scholar
  27. 27.
    Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: Saunders/Elsevier; 2008. xivGoogle Scholar
  28. 28.
    Levene MI, de Vries LS. Hypoxic-ischemic encephalopathy. In: Martin RJ, Fanaroff AA, editors. Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant. 9th ed. St. Louis: Elsevier/Saunders; 2011. p. 952–71.Google Scholar
  29. 29.
    Rainaldi MA, Perlman JM. Pathophysiology of birth asphyxia. Clin Perinatol. 2016;43(3):409–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Gunn AJ. Cerebral hypothermia for prevention of brain injury following perinatal asphyxia. Curr Opin Pediatr. 2000;12(2):111–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Gunn AJ, Thoresen M. Hypothermic neuroprotection. NeuroRx. 2006;3(2):154–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169(4):397–403.CrossRefPubMedGoogle Scholar
  33. 33.
    Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013;31(1):CD003311.Google Scholar
  34. 34.
    Gunn AJ, Laptook AR, Robertson NJ, Barks JD, Thoresen M, Wassink G, et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr Res. 2017;81(1–2):202–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Tagin MA, Woolcott CG, Vincer MJ, Whyte RK, Stinson DA. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166(6):558–66.CrossRefPubMedGoogle Scholar
  36. 36.
    Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365(9460):663–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Simbruner G, Mittal RA, Rohlmann F, Muche R, nnnT P. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010;126(4):e771–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361(14):1349–58.CrossRefPubMedGoogle Scholar
  39. 39.
    Papile LA, Baley JE, Benitz W, Cummings J, Carlo WA, Eichenwald E, et al. Hypothermia and neonatal encephalopathy. Pediatrics. 2014;133(6):1146–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Glass HC, Wusthoff CJ, Shellhaas RA. Amplitude-integrated electro-encephalography: the child neurologist’s perspective. J Child Neurol. 2013;28(10):1342–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Manley BJ, Owen LS, Hooper SB, Jacobs SE, Cheong JLY, Doyle LW, et al. Towards evidence-based resuscitation of the newborn infant. Lancet. 2017;389(10079):1639–48.CrossRefPubMedGoogle Scholar
  42. 42.
    O’Reilly KM, Tooley J, Winterbottom S. Therapeutic hypothermia during neonatal transport. Acta Paediatr. 2011;100(8):1084–6. discussion e49CrossRefPubMedGoogle Scholar
  43. 43.
    Hallberg B, Olson L, Bartocci M, Edqvist I, Blennow M. Passive induction of hypothermia during transport of asphyxiated infants: a risk of excessive cooling. Acta Paediatr. 2009;98(6):942–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Kendall GS, Kapetanakis A, Ratnavel N, Azzopardi D, Robertson NJ, Group CoRS. Passive cooling for initiation of therapeutic hypothermia in neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2010;95(6):F408–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Fairchild K, Sokora D, Scott J, Zanelli S. Therapeutic hypothermia on neonatal transport: 4-year experience in a single NICU. J Perinatol. 2010;30(5):324–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Hoehn T, Hansmann G, Bührer C, Simbruner G, Gunn AJ, Yager J, et al. Therapeutic hypothermia in neonates. Review of current clinical data, ILCOR recommendations and suggestions for implementation in neonatal intensive care units. Resuscitation. 2008;78(1):7–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Chaudhary R, Farrer K, Broster S, McRitchie L, Austin T. Active versus passive cooling during neonatal transport. Pediatrics. 2013;132(5):841–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Laptook AR, Shankaran S, Tyson JE, Munoz B, Bell EF, Goldberg RN, et al. Effect of therapeutic hypothermia initiated after 6 hours of age on death or disability among newborns with hypoxic-ischemic encephalopathy: a randomized clinical trial. JAMA. 2017;318(16):1550–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Thoresen M. Supportive care during neuroprotective hypothermia in the term newborn: adverse effects and their prevention. Clin Perinatol. 2008;35(4):749–63. viiCrossRefPubMedGoogle Scholar
  50. 50.
    Shankaran S. The postnatal management of the asphyxiated term infant. Clin Perinatol. 2002;29(4):675–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Sweetman DU, Riordan M, Molloy EJ. Management of renal dysfunction following term perinatal hypoxia-ischaemia. Acta Paediatr. 2013;102(3):233–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–38.CrossRefPubMedGoogle Scholar
  53. 53.
    Executive summary: neonatal encephalopathy and neurologic outcome, second edition. Report of the American college of obstetricians and gynecologists’ Task force on neonatal encephalopathy. Obstet Gynecol. 2014;123(4):896–901.Google Scholar
  54. 54.
    Martinello K, Hart AR, Yap S, Mitra S, Robertson NJ. Management and investigation of neonatal encephalopathy: 2017 update. Arch Dis Child Fetal Neonatal Ed. 2017;102(4):F346–F58.CrossRefPubMedGoogle Scholar
  55. 55.
    Leone TA, Finer NN. Shock: a common consequence of neonatal asphyxia. J Pediatr. 2011;158(2 Suppl):e9–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Kecskes Z, Healy G, Jensen A. Fluid restriction for term infants with hypoxic-ischaemic encephalopathy following perinatal asphyxia. Cochrane Database Syst Rev. 2005;20(3):CD004337.Google Scholar
  57. 57.
    Durkan AM, Alexander RT. Acute kidney injury post neonatal asphyxia. J Pediatr. 2011;158(2 Suppl):e29–33.CrossRefPubMedGoogle Scholar
  58. 58.
    Shetty J. Neonatal seizures in hypoxic-ischaemic encephalopathy – risks and benefits of anticonvulsant therapy. Dev Med Child Neurol. 2015;57(Suppl 3):40–3.CrossRefPubMedGoogle Scholar
  59. 59.
    Gomella TL, Cunningham MD, Eyal FG. Neonatology: management, procedures, on-call problems, diseases, and drugs. 6th ed. New York: McGraw-Hill Medical; 2009. xviii, 894 p.Google Scholar
  60. 60.
    Merhar SL, Chau V. Neuroimaging and other Neurodiagnostic tests in neonatal encephalopathy. Clin Perinatol. 2016;43(3):511–27.CrossRefPubMedGoogle Scholar
  61. 61.
    Rollins N, Booth T, Morriss MC, Sanchez P, Heyne R, Chalak L. Predictive value of neonatal MRI showing no or minor degrees of brain injury after hypothermia. Pediatr Neurol. 2014;50(5):447–51.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephany M. Guiles
    • 1
  • Jay P. Goldsmith
    • 1
  1. 1.Division of Newborn Medicine, Department of PediatricsTulane University School of Medicine, Tulane Lakeside Hospital for Women and ChildrenNew OrleansUSA

Personalised recommendations