Advertisement

Introduction to Text Analytics

  • Murugan Anandarajan
  • Chelsey Hill
  • Thomas Nolan
Chapter
Part of the Advances in Analytics and Data Science book series (AADS, volume 2)

Abstract

In this chapter we define text analytics, discuss its origins, cover its current usage, and show its value to businesses. The chapter describes examples of current text analytics uses to demonstrate the wide array of real-world impacts. Finally, we present a process road map as a guide to text analytics and to the book.

Keywords

Text analytics Text mining Data mining Content analysis 

References

  1. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2002). Latent Dirichlet allocation. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (pp. 601–608). Cambridge: MIT Press.Google Scholar
  2. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.Google Scholar
  3. Bolasco, S., Canzonetti, A., Capo, F., Della Ratta-Rinaldi, F., & Singh, B. (2005). Understanding text mining: A pragmatic approach. In Knowledge mining (pp. 31–50). Heidelberg: Springer.CrossRefGoogle Scholar
  4. Bose, R. (2009). Advanced analytics: Opportunities and challenges. Industrial Management & Data Systems, 109(2), 155–172.CrossRefGoogle Scholar
  5. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36, 1165–1188.CrossRefGoogle Scholar
  6. Dave, K., Lawrence, S., & Pennock, D. M. (2003, May). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the 12th International Conference on World Wide Web (pp. 519–528). ACM.Google Scholar
  7. Davenport, T. H. (2013). Analytics 3.0. Boston: Harvard Business Review.Google Scholar
  8. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391.CrossRefGoogle Scholar
  9. Dörre, J., Gerstl, P., & Seiffert, R. (1999). Text mining: Finding nuggets in mountains of textual data. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 398–401). ACM.Google Scholar
  10. Dumais, S. T., Furnas, G. W., Landauer, T. K., & Deerwester, S. (1988). Using latent semantic analysis to improve information retrieval. In Proceedings of CHI’88: Conference on Human Factors in Computing (pp. 281–285). New York: ACM.Google Scholar
  11. Fan, W., Wallace, L., Rich, S., & Zhang, Z. (2006). Tapping the power of text mining. Communications of the ACM, 49(9), 76–82.  https://doi.org/10.1145/1151030.1151032.CrossRefGoogle Scholar
  12. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37.Google Scholar
  13. Feldman, R., & Dagan, I. (1995, August). Knowledge discovery in textual databases (KDT). KDD, 95, 112–117.Google Scholar
  14. Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI Magazine, 13(3), 57.Google Scholar
  15. Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 1(1), 60–76.CrossRefGoogle Scholar
  16. Hearst, M. A. (1999a, June). Untangling text data mining. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics (pp. 3–10). Association for Computational Linguistics.Google Scholar
  17. Hearst, M. A. (1999b). The use of categories and clusters for organizing retrieval results. In Natural language information retrieval (pp. 333–374). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Hearst, M. (2003). What is text mining. UC Berkeley: SIMS.Google Scholar
  19. Hofmann, T. (1999, July). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 289–296).Google Scholar
  20. IBM. (2011, November 15). The 2011 IBM tech trends report: The clouds are rolling in….is your business ready? http://www.ibm.com/developerworks/techtrendsreport
  21. Krippendorff, K. (2012). Content analysis: An introduction to its methodology. Thousand Oaks: Sage.Google Scholar
  22. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.Google Scholar
  23. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167.CrossRefGoogle Scholar
  24. Miner, G., et al. (2012). Practical text mining and statistical analysis for non-structured text data applications. Amsterdam: Academic Press.Google Scholar
  25. Müller, O., Junglas, I., Debortoli, S., & vom Brocke, J. (2016). Using text analytics to derive customer service management benefits from unstructured data. MIS Quarterly Executive, 15(4), 243–258.Google Scholar
  26. Nagarkar, S. P., & Kumbhar, R. (2015). Text mining: An analysis of research published under the subject category ‘information science library science’ in web of science database during 1999–2013. Library Review, 64(3), 248–262.CrossRefGoogle Scholar
  27. Nasukawa, T., & Yi, J. (2003, October). Sentiment analysis: Capturing favorability using natural language processing. In Proceedings of the 2nd International Conference on Knowledge Capture (pp. 70–77). ACM.Google Scholar
  28. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys (CSUR), 34(1), 1–47.CrossRefGoogle Scholar
  29. Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: Techniques, applications and issues. International Journal of Advanced Computer Science & Applications, 1(7), 414–418.Google Scholar
  30. Ur-Rahman, N., & Harding, J. A. (2012). Textual data mining for industrial knowledge management and text classification: A business oriented approach. Expert Systems with Applications, 39(5), 4729–4739.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Murugan Anandarajan
    • 1
  • Chelsey Hill
    • 2
  • Thomas Nolan
    • 3
  1. 1.LeBow College of BusinessDrexel UniversityPhiladelphiaUSA
  2. 2.Feliciano School of BusinessMontclair State UniversityMontclairUSA
  3. 3.Mercury Data ScienceHoustonUSA

Personalised recommendations