Advertisement

A New Method Based on PFC3D and Hierarchical Modeling for Pile Foundation Analysis

  • Honghua Zhao
  • Jin Zhang
  • Peng Qiu
  • Shunying Ji
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

By developing a hierarchical modeling method, using discrete element analysis software PFC3D, a pile foundation model is built. According to the idea of finite element method, using smaller particles for concerned part and use larger particles for the part which is close to the model boundary. By adjusting the micromechanical parameters of the particles, the macroscopic mechanical properties of the soils constituted by different particle diameters are kept constant, which is verified by the triaxial test. This method can be applied to study the soil-structures interaction problems with DEM method by saving computation cost.

Keywords

Discrete element method Pile foundation Hierarchical modeling 

Notes

Acknowledgements

This research project was financially supported by the National Natural Science Foundation of China (No. 11672066). The authors are greatly appreciated for this support which made this study possible.

References

  1. 1.
    Hongladaromp, T., Chen, N.J., Lee, S.L.: Load distribution in rectangular footings on piles. Geotech. Eng. 4(2), 77–90 (1973)Google Scholar
  2. 2.
    Kuwabara, F.: An elastic analysis for piled raft foundations in a homogeneous soil. Soils Found. 29(1), 82–92 (1989)CrossRefGoogle Scholar
  3. 3.
    Clancy, P., Randolph, M.F.: An approximate analysis procedure for piled raft foundations. Int. J. Numer. Anal. Meth. Geomech. 17, 849–869 (1993)CrossRefGoogle Scholar
  4. 4.
    Poulos, H.G.: An approximate numerical analysis of pile–raft interaction. Int. J. Numer. Anal. Meth. Geomech. 18, 73–92 (1994)CrossRefGoogle Scholar
  5. 5.
    Ta, L.D., Small, J.C.: Analysis of piled raft systems in layered soils. Int. J. Num. Anal. Methods Geomech. 20, 57–72 (1996)CrossRefGoogle Scholar
  6. 6.
    Ta, L.D., Small, J.C.: An approximation for analysis of raft and piled raft foundations. Comput. Geotech. 20(2), 105–123 (1997)CrossRefGoogle Scholar
  7. 7.
    Zhang, H.H., Small, J.C.: Analysis of capped pile groups subjected to horizontal and vertical loads. Comput. Geotech. 26, 1–21 (2000)CrossRefGoogle Scholar
  8. 8.
    Reul, O.: Numerical study of the bearing behavior of piled rafts. Int. J. Geomech. 2(4), 59–68 (2004).  https://doi.org/10.1061/(asce)1532-3641CrossRefGoogle Scholar
  9. 9.
    Sinha, A., Hanna, A.M.: 3D numerical mode for piled raft foundation. Int. J. Geomech. 17(2), 04016055 (2017)CrossRefGoogle Scholar
  10. 10.
    Duan, K., Kwok, C.Y., Tham, L.G.: Micromechanical analysis of the failure process of brittle rock [J]. Int. J. Numer. Anal. Meth. Geomech. 39(6), 618–634 (2015)CrossRefGoogle Scholar
  11. 11.
    Gourvenc, S.M., Powrie, W.: Three-dimensional finite element analysis of diaphragm wall installation. Geotechnique 49(6), 801–823 (1999)CrossRefGoogle Scholar
  12. 12.
    Yasushi, A., Osamu, K., Osamu, M., et al.: A numerical study of ground displacement and stress during and after the installation of deep circular diaphragm walls and soil excavation. Comput. Geotech. 35(5), 791–807 (2008)CrossRefGoogle Scholar
  13. 13.
    Cundall, P.: A discontinuous future for numerical modelling in geomechanics? Proc. ICE Geotech. Eng. 149(1), 41–47 (2001)CrossRefGoogle Scholar
  14. 14.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)CrossRefGoogle Scholar
  15. 15.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  16. 16.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Mining Sci. 41(8), 1329–1364 (2004)CrossRefGoogle Scholar
  17. 17.
    Peng, S.Y., Ng, C.W.W., Zheng, G.: The dilatant behaviour of sand–pile interface subjected to loading and stress relief. Acta Geotech. 9, 425–437 (2014).  https://doi.org/10.1007/s11440-013-0216-9CrossRefGoogle Scholar
  18. 18.
    Zhou, J., Jian, Q., Zhang, J., et al.: Coupled 3D discrete-continuum numerical modeling of pile penetration in sand. J. Zhejiang Univ. Sci. A. 13(1), 44–55 (2012).  https://doi.org/10.1631/jzus.a1100172 CrossRefGoogle Scholar
  19. 19.
    Liu, W.-B., Zhou, J.: Numerical simulation of particle flow code for pile under uplifting load. Chin. J. Geotech. Eng. 26(4), 516–521 (2004)Google Scholar
  20. 20.
    Lobo-Guerrero, S., Vallejo, L.E.: Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granular Matter 9(3), 241–250 (2007)CrossRefGoogle Scholar
  21. 21.
    Jenck, O., Dias, D., Kastner, R.: Discrete element modelling of a granular platform supported by piles in soft soil—validation on a small scale model test and comparison to a numerical analysis in a continuum. Comput. Geotech. 36, 917–927 (2009)CrossRefGoogle Scholar
  22. 22.
    Lai, H.-J., Zheng, J.-J., Zhang, J., Zhang, R.-J., Cui, L.: DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments. Comput. Geotech. 61, 13–23 (2014)CrossRefGoogle Scholar
  23. 23.
    Ng, T.-T., Meyers, R.: Side resistance of drilled shafts in granular soils investigated by DEM. Comput. Geotech. 68, 161–168 (2015)CrossRefGoogle Scholar
  24. 24.
    Villard, P., Chevalier, B., Le Hello, B., Combe, G.: Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic. Comput. Geotech. 36(5), 709–717 (2009)CrossRefGoogle Scholar
  25. 25.
    Hamdi, P., Stead, D., Elmo, D.: Damage characterization during laboratory strength testing: A 3D-finite-discrete element approach. Comput. Geotech. 60, 33–46 (2014)CrossRefGoogle Scholar
  26. 26.
    Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Sloan, S.W.: Coupled discrete element–finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil. Comput. Geotech. 63, 267–278 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Honghua Zhao
    • 1
  • Jin Zhang
    • 1
  • Peng Qiu
    • 1
  • Shunying Ji
    • 1
  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational MechanicsDalian University of TechnologyDalianChina

Personalised recommendations