Advertisement

Damping Ratio and Natural Frequency of Dynamic System in Milling

  • K. Yu. Kravchenko
  • S. S. Kugaevskii
  • M. P. Zhuravlev
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The problem of the machine tool stability in metalworking has existed since the first machine tool was created. Stability plays an important role in investigations dedicated to machining quality improvement, wear decrease, and, on the other hand, productivity increase. The identification of dynamic parameters such as modes, damping, and stiffness is a part of a stability problem. There are two groups of techniques to find the dynamic parameters: experimental modal analysis and operational modal analysis (OMA). In this study, OMA is used to identify the dynamic parameters of the system in milling. Responses (accelerations) are stored via three-axis accelerometer mounted on the spindle. Furthermore, power spectral density matrix of output responses is estimated. The estimation of natural frequencies and damping ratios is based on the analysis of a power spectral density matrix. A simulation model of milling is created, and some experimental tests are done to verify the suggested approach. The results are discussed as well.

Keywords

Modal analysis Stability Milling 

Notes

Acknowledgements

The work was supported by Ministry of Education and Science of the Russian Federation, contract № 02.G25.31.0148.

References

  1. 1.
    Bandat J (2010) Random data, analysis and measurement procedures, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Brincker R, Ventura CE, Anderson P (1999) Modal identification of output-only systems using frequency domain decomposition. Smart Mater Struct 10:441–445CrossRefGoogle Scholar
  3. 3.
    Shih CY, Twuei YG, Allemang RJ et al (1988) A frequency domain global parameter estimation method for multiple reference frequency response measurements. Mech Sys Sig Proc 2:349–365.  https://doi.org/10.1016/0888-3270(88)90059-3CrossRefzbMATHGoogle Scholar
  4. 4.
    Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech SysSig Proc 13:855–878.  https://doi.org/10.1006/mssp.1999.1249CrossRefGoogle Scholar
  5. 5.
    Van Overschee P, De Moor B (1993) Subspace algorithms for the stochastic identification problem. Automatica 29:649–660.  https://doi.org/10.1016/0005-1098(93)90061-WMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhang L-M, Yao Y-X, Lu M-F (1987) An improved time domain polyreference method for modal identification. Mech Sys Sig Proc 1:399–413.  https://doi.org/10.1016/0888-3270(87)90097-5CrossRefzbMATHGoogle Scholar
  7. 7.
    Leuridan JM, Brown DL, Allemang RJ (1986) Time domain parameter identification methods for linear modal analysis: a unifying approach. Trans ASME J Vib AcoustStress Reliab 108:1–8.  https://doi.org/10.1115/1.3269298CrossRefGoogle Scholar
  8. 8.
    Ewins DJ (2000) Modal testing: theory, practice and application, 2nd edn. Wiley, New YorkGoogle Scholar
  9. 9.
    Krasil’nikov AYa, Kravchenko KYu (2013) Analytical approaches for stability analysis of milling process as a delay system, handbook. Eng J 9:23–31Google Scholar
  10. 10.
    Krasil’nikov AYa, Kravchenko KYu (2013) Research of stability of delayed systems, describing milling process, in case of one degree of freedom. Bull Mech Eng 9:67–75Google Scholar
  11. 11.
    Krasil’nikov AYa, Kravchenko KYu (2016) Determining the stability regions in end milling. Russ Eng Res 36:294–299.  https://doi.org/10.3103/s1068798x16040080CrossRefGoogle Scholar
  12. 12.
    Krasil’nikov AYa, Kravchenko KYu (2016) Application of analytical approach and simulation for determining of stability lobe diagram of end milling. Bull. Mech. Eng 1:79–84Google Scholar
  13. 13.
    Kravchenko KYu, Kugaevsky SS, Zhuravlev MP et al (2017) Natural frequencies estimation using operational modal analysis. Bull PNRPU Mech Eng Mater Sci 2:21–35.  https://doi.org/10.15593/2224-9877/2017.2.02CrossRefGoogle Scholar
  14. 14.
    James OH III, Carne TG (1995) The natural excitation technique (NExT) for modal parameter extraction from operating structures. Int J Anal Exp Modal Anal 10:260–277Google Scholar
  15. 15.
    James GH, Carne TG, Lauffer JP et al (1992) Modal testing using natural excitation. In: Proceedings of the 10-th IMAC, San Diego, USA, 3–7 February 1992Google Scholar
  16. 16.
    Brincker R, Ventura CE, Andersen P (2001) Damping estimation by frequency domain decomposition. In: A conference on structural dynamics, Kissimmee, Florida, 5–8 February 2001Google Scholar
  17. 17.
    Juang J-N, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dynam 8:620–627.  https://doi.org/10.2514/3.20031CrossRefzbMATHGoogle Scholar
  18. 18.
    Juang J-N, Cooper JE, Wright JR (1988) An eigensystem realization algorithm using data correlation (ERA/DC) for modal parameter identification. Control-Theory Adv Technol 4:5–14MathSciNetGoogle Scholar
  19. 19.
    Edwin R (2012) System identification methods for (operational) modal analysis: review and comparison. Arch Comput Methods Eng 19:51–124.  https://doi.org/10.1007/s11831-012-9069-xMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Melnikov A, Soal K, Bienert O (2017) Determination of static stiffness of mechanical structures from operational modal analysis. In: 7-th international operational modal analysis conference, Ingolstadt, Germany, 10–12 May 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Yu. Kravchenko
    • 1
  • S. S. Kugaevskii
    • 1
  • M. P. Zhuravlev
    • 1
  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations