Advertisement

Selection of Incidence Angle at Designing Blade Row of Compressors and Turbines

  • K. E. Rozhkov
  • I. A. Krivosheev
  • N. B. Simonov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Selecting angles of attack methods in the design of blade rows (BR) in the composition of compressors and turbines are considered. A number of additions are proposed for using the generalized characteristics of blade profile gratings and A. Howell’s empirical dependencies. To verify the method, the results of factory tests, 2D and 3D CAD/ CAE-simulation of the flow, and gas-dynamic characteristics of the flow parts’ components including blowing of the blade profile gratings were used. It is shown that this method can be effectively used to optimize the geometry of the blade profile gratings in the composition of compressors and turbines and the choice of their operation modes. This allows to significantly accelerate the design and development of gas turbine engines (GTE), gas turbine drives (GTD), and power plants (PP). The proposed method can be used in the creation and use of gas turbines in power, transport, and other areas.

Keywords

Gas turbine engines Gas-dynamic characteristics Angles of attack Operation modes Optimization 

References

  1. 1.
    Rzhavin YA, Lokaya V (1995) Osevyye i tsentrobezhnyye kompressory dvigateley letatel’nykh apparatov (Axial and centrifugal compressors of aircraft engines: Theory, design and calculation). MAI, MoscowGoogle Scholar
  2. 2.
    Howell AR (1947) Gazodinamika osevogo kompressora (Gas dynamics of an axial compressor). MoscowGoogle Scholar
  3. 3.
    Eckert B (1959) Osevyye i tsentrobezhnyye kompressory. Primeneniye, teoriya, raschet (Axial and centrifugal compressors. Application, theory, calculation). Mashgis, MoscowGoogle Scholar
  4. 4.
    AGARD/PEP Working Group 12 (1981) Trough Flow Calculations in Axial Flow Turbomachines, AGARD-AR-175Google Scholar
  5. 5.
    Boyce MP (2008) Advanced gas turbines, availability and maintainability, power and energy technology. Houston, TexasGoogle Scholar
  6. 6.
    Bunimovich AI, Svyatogorov AA (1967) Aerodinamicheskiye kharakteristiki ploskikh kompressornykh reshetok pri bol’shoy dozvukovoy skorosti (Aerodynamic characteristics of flat compressor grids at a high subsonic speed). Mashinostroenie, MoscowGoogle Scholar
  7. 7.
    Gostelow DP (1987) Aerodynamics of lattices of turbomachines. GostelowGoogle Scholar
  8. 8.
    Zhukovsky MI (1967) Aerodinamicheskiy raschet potoka v osevykh turbo-mashinakh (Aerodynamic flow calculation in axial turbo-machines). Mashinostroenie, MoscowGoogle Scholar
  9. 9.
    Ol’shtein LE, Protserov VG (1948) Method of calculating the axial compressor from blow down data of flat compressor gratings. MoscowGoogle Scholar
  10. 10.
    Kazanchan PP, Karavaev BV, Serkov VI, Shishkin VN (1975) Obobshcheniye rezul’tatov produvok ploskikh kompressornykh reshetok metodom regressionnogo analiza (Generalization of the results of blowdown of flat compressor gratings by the regression analysis method). CIAM, MoscowGoogle Scholar
  11. 11.
    Atlas iskhodnykh model’nykh stupeney osevykh kompressorov (Atlas of initial model stages of axial compressors) (1967) Tsentral’nyy kotloturbinnyy institut im. I.I. Polzunova, Leningrad, 1967Google Scholar
  12. 12.
    Moore RD, Reid L (1980) Performance of sigle-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively and with design pressure ratio of 2,05. Technical paper NASA TP1659, NACAGoogle Scholar
  13. 13.
    Rzhavin YA, Emin ON, Karasev VN (2003) Lopatochnyye mashiny dvigateley letatel’nykh apparatov. Teoriya i raschet (Shovel machines of aircraft engines. Theory and calculation). MAI-Print, MoscowGoogle Scholar
  14. 14.
    Deich ME, Samoilovich GS (1959) Osnovy aerodinamiki osevykh turbomashin. (Fundamentals of aerodynamics of axial turbomachines). Mashgis, MoscowGoogle Scholar
  15. 15.
    Zhdanov IA (2009) Metodika teoreticheskogo rascheta kharakteristiki kompressora aviatsionnogo dvigatelya (Technique of theoretical calculation of the characteristics of the compressor of an aircraft engine). Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika SP Korolova 3(3):76–82Google Scholar
  16. 16.
    Kampsty N (2000)Aerodynamics of compressors. Krieger Publishing CompanyGoogle Scholar
  17. 17.
    Komarov AP (1967) Issledovaniye ploskikh kompressornykh reshetok (Research of flat compressor gratings). Lopatochnyye mashiny i struynyye apparaty, Mashinostroenie, Moscow, pp 67–110Google Scholar
  18. 18.
    Boyko, Girich GA, Ershov VN, Yanevich VN (1989) Metod rascheta dvumernogo techeniya v mnogostupenchatom osevom kompressore (A method for calculating a two-dimensional flow in a multistage axial compressor). Izv. VUZov 5:37–41Google Scholar
  19. 19.
    Howell AR (1945) Fluid dynamics of axial compressors 153:441–452.  https://doi.org/10.1243/pime_proc_1945_153_049_02CrossRefGoogle Scholar
  20. 20.
    Horlock JH (1973) Axial compressors. Krieger Publishing Co Inc.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. E. Rozhkov
    • 1
  • I. A. Krivosheev
    • 1
  • N. B. Simonov
    • 1
  1. 1.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations