Advertisement

Methodology for Automated Design of Optimum Cylindrical Broach Structures Developed by Total of Criteria

  • S. Lukina
  • M. Krutyakova
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The broach is a metal-consuming and complex tool in terms of its structure and manufacture. Its economic feasibility is justified at the optimum structure design, choice of reasonable cutting modes, quality manufacture and proper operation. The authors considered a methodology for the automated design of optimum cylindrical broach structures. The methodology is based upon the building and solution of a linear optimization model in MS Excel. Upon modelling, the broach structure is represented by a total of structural and geometrical parameters. The following properties were chosen as the optimization criteria: stability, strength and stiffness of a working section, and its length, performance and self-cost of broaching. The selected criteria formed a system of target functions. The feasible region is determined by a system of structural, technological and operating limits for the broach parameters. The shaped mathematical model allows for the calculation of optimum values of the structural and geometrical parameters of cylindrical broaches with single and group cutting patterns and chooses the cutting modes.

Keywords

Cylindrical broach Mathematical model Optimization Target function 

References

  1. 1.
    Margulis DK, Tverskoy MM, VN Ashihmin VN (1986) Protjazhki dlja obrabotki otverstij (Broaches for processing of openings). Mashinostroenie, MoscowGoogle Scholar
  2. 2.
    Monday C (1960) Broaching. The Machinery Publishing Co., LondonGoogle Scholar
  3. 3.
    Gilormini P, Felder E (1984) A comparative analysis of three machining processes: broaching, tapping and slotting. Ann CIRP 33(1):19–22CrossRefGoogle Scholar
  4. 4.
    Hagglund S (2003) New procedure for optimizing cutting data for general turning. Proc Inst Mech Eng 217/B:349–362CrossRefGoogle Scholar
  5. 5.
    Todd RH, Alltn DK, Alting L (1994) Manufacturing processes reference guide. Industrial Press Inc., New YorkGoogle Scholar
  6. 6.
    Ozturk O (2003) Modelling of broaching process. M.Sc. thesis, Industrial Engineering. Sabanci University, IstanbulGoogle Scholar
  7. 7.
    Mason P (1986) Computerized cutting-tool management. Am Mach Autom Manuf 5(106–113):116–120Google Scholar
  8. 8.
    Hosseini A, Kishawy HA (2013) On the optimized design of broaching tools. J Manuf Sci Eng 136(1).  https://doi.org/10.1115/1.4025415CrossRefGoogle Scholar
  9. 9.
    Axinte D, Hyde T, Gindy N (2005) An example of selection of the cutting conditions in broaching of heat -resistant alloys based on cutting forces, surface roughness and tool wear mo s.p. J Mater Process Technol 160(3):382–389CrossRefGoogle Scholar
  10. 10.
    Alberti N, Perrone G (1999) Multipass machining optimization by using fuzzy possibilistic programming and genetic algorithms. Proc Inst Mech Eng 213/B:261–273CrossRefGoogle Scholar
  11. 11.
    Challa K, Berra PB (1976) Automated planning and optimization of machining processes: a systems approach. Comp Indus Eng 1:35–46CrossRefGoogle Scholar
  12. 12.
    Kokmeyer E (1984) Better broaching operations. Society of Manufacturing EngineersGoogle Scholar
  13. 13.
    Kokturk U, Budak E (2004) optimization of broaching tool design. Intell Comput Manuf Eng 4:4Google Scholar
  14. 14.
    Sutherland JW, Salisbury EJ, Hoge FW (1997) A model for the cutting force system in the gear broaching process. Int J Mach Tools Manuf 47(10):1409–1421CrossRefGoogle Scholar
  15. 15.
    Terry WR, Karni R, Huang YR (1992) Concurrent tool and production system design for surface broach cutting tool: a knowledge based systems approach. Int J Prod Res 30(2):219–240CrossRefGoogle Scholar
  16. 16.
    Saravanan R, Asokan P, Sachidanandam M (2002) A multi-objective genetic algorithm approach for optimization of surface grinding operations. Int J Mach Tools Manuf 42:1307–1334CrossRefGoogle Scholar
  17. 17.
    Sajeev V, Vijayaraghavan L, Rao URK (2000) Analysis of the effects of burnishing in internal broaching. Int J Mech Eng Educ 28(2):163–173CrossRefGoogle Scholar
  18. 18.
    Stephenson DA, Agapiou JS (1997) Metal cutting theory and practice. Marcel Dekker, New YorkGoogle Scholar
  19. 19.
    Degarmo EP, Black JT, Kohser RA (2003) DeGarmo’s materials and processes in manufacturing, 9th edn. Wiley, New YorkGoogle Scholar
  20. 20.
    Makarov VM, Lukina SV (2012) avtomatizacija kak metod jeffektivnogo tehperevooruzhenija predprijatija (automation as method of effective technical re-equipment of the enterprise). RITM Publ Repair Innov Technol Mod 6:10–13Google Scholar
  21. 21.
    Lukina SV, Krutyakova MV (2013) Sovremennye problemy organizacii i upravlenija instrumental”nym obespecheniem mashinostroitel”nyh proizvodstv (the modern problems of the management and control of instrumental support of machine-building productions). University of Mechanical Engineering Publishers, MoscowGoogle Scholar
  22. 22.
    Krutyakova MV, Lukina SV (2009) metodika proektirovanija i raschet protjazhnogo instrumenta (Technique of design and calculation of the broaching tool). MSTU “MAMI” Publishers, MoscowGoogle Scholar
  23. 23.
    Lukina SV, Sedov BE, Grechishnikov VA (1997) Povyshenie jeffektivnosti protjazhnogo instrumenta na osnove matematicheskogo modelirovanija (Increase in efficiency of a broaching tool on the basis of mathematical simulation). Vestn mashinostroenija 2:23–25Google Scholar
  24. 24.
    Lukina S (2015) formirovanie sistemy chastnyh pokazatelej dlja ocenki kachestva rezhushhego instrumenta na jetape tehnicheskoj podgotovki proizvodstva (Formation of the system of the local indicators to assess the quality of the cutting tool at the stage of technical training of production). obrabotka metallov (Metal Work Mater Sci) 4:43–50.  https://doi.org/10.17212/1994-6309-2015-4-43-50
  25. 25.
    Lukina SV (2001) Modeling of stresses-deformed state of inserted cutting tools during their production and operation. Avtomatizatsiya i Sovremennye Tekhnologii 4:27Google Scholar
  26. 26.
    Lukina SV, Sedov BE, Grechishnikov VA, Kosov MG (1997) Issledovanie naprjazhenno-deformirovannogo sostojanija zub’ev kruglyh protjazhek chislennym metodom konechnyh jelementov (Research of the stress-strain state of the teeths of Cylindrical Broach by the numerical finite element method). Vestn mashinostroenija 3:22–24Google Scholar
  27. 27.
    Lukina SV, Makarov VM, Krutyakova MV (2005) Issledovanie deformacij zub’ev kruglyh protjazhek metodom konechnyh jelementov (Research of deformations of teeths of Cylindrical Broach by the finite-element method). STIN 2:11–13Google Scholar
  28. 28.
    Bekaev AA, Maksimov YV, Lukina SV (2015) Predicting the surface quality in discontinuous cutting. Russ Eng Res 10:792–794.  https://doi.org/10.3103/s1068798x15100044CrossRefGoogle Scholar
  29. 29.
    Grechishnikov VA, Lukina SV, Veselov AI, Makarov DV (2001) The forming processes modeling for geometric parameters of inserted cutting tools with regard to their assembly technology. Avtomatizatsiya i Sovremennye Tekhnologii 4:32Google Scholar
  30. 30.
    Lukina SV, Krutyakova MV, Kupriyanova OP, Vyalkova PF (2010) Proektirovanie protjazhek optimal’’nyh konstrukcij v srede microsoft excel (Optimal design broaching in microsoft Excel. obrabotka metallov (Metal Work Mater Sci) 1:24–26Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow State University of Technology “STANKIN”MoscowRussia
  2. 2.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations