# Correlation and Regression Method of Centrifugal Pump Geometry Optimization

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

## Abstract

Correlation and regression analysis is the effective means to study the narrowness and analytical relationships of the factors to be analyzed. It can be applied in technics as a result of gathering and processing of operational data or results of tests of already existing samples of machinery, for example, for centrifugal pumps upon hydraulic tests. This article covers the procedure of correlation and regression analysis of centrifugal pump head and efficiency dependencies on its impeller geometry in meridional and circumferential planes. The purpose of the analysis is to optimize the impeller geometry in order to achieve the maximum pump head ratio and efficiency. This article provides a detailed description of the proposed optimization method of the design. Geometric factors more significantly effecting the energy parameters of the pump are included in the mathematical models connecting the energy parameters of the centrifugal pump with the relative geometric dimensions of the impeller. Based on the obtained models, optimization of the impeller geometry is performed by adjusting the absolute dimensions of the impeller interblade channels to the values corresponding to the optimum ones determined by correlation and regression analysis. This approach allows modification of existing equipment based on the mathematical processing of empirical data appearing only after the beginning of operation. The correlation and regression method of design optimization is one of the few means for efficient use of operational data not only in the field of centrifugal pumps but also in other hydraulic machines and devices as well. This method is informative, does not require intensive experimental studies, and provides for a modification of the equipment with the minimum material and financial expenses.

## Keywords

Mathematical model Correlation analysis Pump

## References

1. 1.
Ovsyannikov BV, Borovsky BI (1986) Teoriya i raschot agregatov pitaniya zhidkostnykh raketnykh dvigateley (Theory and calculation of power units of liquid rocket engines). Mashinostroyeniye, MoscowGoogle Scholar
2. 2.
Ovsyannikov BV, Chebaevsky VF (1975) Vysokooborotnyye lopatochnyye nasosy (High-speed vane-type pumps). Mashinostroyeniye, MoscowGoogle Scholar
3. 3.
Ris VF (1981) Tsentrobezhnyye kompressornyye mashiny (Centrifugal compressor machines). Mashinostroyeniye, LeningradGoogle Scholar
4. 4.
Den GN (1973) Mekhanika potoka v tsentrobezhnykh kompressorakh (Mechanics of flow in centrifugal compressors). Mashinostroyeniye, LeningradGoogle Scholar
5. 5.
Draper NR, Smith H (1997) Applied regression analysis. Wiley, New York
6. 6.
Boldin MV, Glynin LP, Lozhkin VL (1998) Metodicheskiye ukazaniya po primeneniyu statisticheskikh metodov v zadachakh aviatsionnoy tekhniki (Methodical instructions on the application of statistical methods in aeronautical engineering problems). MAI, MoscowGoogle Scholar
7. 7.
Zharkovsky AA, Shkarbul SN, Dmitrieva SA (1996) Matematicheskiye modeli dlya lopastnykh gidromashin. Korrelyatsionnyy i regressionnyy analiz (Mathematical models for blade hydraulic machines. Correlation and regression analysis). Saint-Petersburg state technical university, Saint-PetersburgGoogle Scholar
8. 8.
Zhivopistsev FA, Ivanov VA (1995) Regressionnyy analiz v eksperimental’noy fizike (Regression analysis in experimental physics). MGU, Moscow
9. 9.
Rumsinsky LZ (1971) Matematicheskaya obrabotka rezul’tatov eksperimenta (Experimental data mathematic processing). Nauka, MoscowGoogle Scholar
10. 10.
Jonson Norman L, Leone Fred C (2007) Statistics and experimental design in engineering and the physical sciences, vol II. Wiley, New YorkGoogle Scholar
11. 11.
der Waerden Van (1960) Mathematische statistic. Universitat Zurich, BerlinGoogle Scholar
12. 12.
Aivazyan SA, Enyukov IS, Meshalkin LD (1983) Prikladnaya statistika. Osnovy modelirovaniya i pervichnaya obrabotka dannykh (Practical statistics. Modelling and initial data processing basics). Finansy i statistika, MoscowGoogle Scholar
13. 13.
Tyurin YN, Makarov AA (1995) Analiz dannykh na komp’yutere (Computer aided data analysis). Finansy i statistika, MoscowGoogle Scholar
14. 14.
Aivazyan SA, Mhitaryan VS (2001) Prikladnaya statistika v zadachakh i uprazhneniyakh (Practical statistics in tasks and exercises). INFRA, MoscowGoogle Scholar
15. 15.
Bushin PY (2002) Statisticheskiye metody (Statistical methods). Akademiya ekonomiki i prava, KhabarovskGoogle Scholar
16. 16.
Katalazhnova IN (2004) Otsenka urovnya faktornogo vliyaniya raskhoda rabochego tela na energeticheskuyu kharakteristiku tsentrobezhnogo nasosa metodami dispersionnogo analiza (Assessment of factor influence level of working part flowrate on power parameters of centrifugal pumps by means of dispersion analysis). In: Records of the 5-th international technical scientific conference Altay State Technical University, Barnaul, pp 243–245Google Scholar
17. 17.
Harald Cramer (2006) Mathematical methods of statistics. University of Stockholm, StockholmGoogle Scholar
18. 18.
Ovsyannikov BV, Yalovoy NS (1992) Modelirovaniye i optimizatsiya kharakteristik vysokooborotnykh nasosnykh agregatov (Modelling an optimization of high-RPM pumping units parameters). Mashinostroyeniye, MoscowGoogle Scholar
19. 19.
Borovsky BI (1989) Energeticheskiye parametry i kharakteristiki vysokooborotnykh lopastnykh nasosov (Energy parameters and characteristics of high-speed vane-type pumps). Mashinostroyeniye, MoscowGoogle Scholar
20. 20.
Vasilkov YV, Vasilkova NN (2002) Komp’yuternyye tekhnologii vychisleniy v matematicheskom modelirovanii (IT technologies for mathematic modelling calculations). Finansy i statistika, MoscowGoogle Scholar
21. 21.
Chuyan RK, Ganshina TE (2000) Statisticheskiye metody analiza matematicheskikh modeley elementov DLA (Aircraft engine mathematic model development and analysis statistical methods). MAI, MoscowGoogle Scholar
22. 22.
Montgomery Douglas C (1980) Design and analysis of experiments. Georgia Institute of Technology, Wiley, New York
23. 23.
Pierre-Jean Laurent (1972) Approximation et optimization. Universite scientifique et medicale de grenoble, ParisGoogle Scholar