Advertisement

Use of Dynamic Programming Method to Design for Optimal Performance of Grinding Cycles

  • P. P. Pereverzev
  • A. V. Akintseva
  • M. K. Alsigar
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The design of an optimal grinding cycle that provides execution of all requirements of a drawing in terms of precision and quality in the shortest possible time is a complicated scientific and technical task that could be solved with a dynamic programming method (DPM) that is considered to be a method of optimal control theory. This article discusses the main aspects of DPM application for the optimization of short grinding cycles. The application of this method is stipulated with the fact that there is no need to limit a tolerance zone and this method is not sensitive to properties of control model and restrictions. The result is an ability to apply restrictions of precision (accuracy) not only to diametrical errors (inaccuracy) but also to form the deviation of surfaces. The purpose of operations efficiency increase defines the criteria of objective function to provide the shortest possible time of treatment.

Keywords

Cycles Cutting modes Internal grinding External grinding Dynamic programming method 

References

  1. 1.
    Oliveira JFG, Silva EJ, Guo C, Hashimoto F (2009) Industrial challenges in grinding. Ann CIRP 58:663–680CrossRefGoogle Scholar
  2. 2.
    Rowe WB (2013) Principles of modern grinding technology. Elsevier, LiverpoolGoogle Scholar
  3. 3.
    Krajinik P, Drazumeric R, Badger J, Hashimito F (2014) Cycle optimization in cam-lobe grinding for high productivity. CIRP Ann Manuf Technol 630:333–336Google Scholar
  4. 4.
    Nathan RD, Vijayaraghavan L, Krishnamurthy R (2001) Intelligent estimation of burning limits to aid in cylindrical grinding cycle planning. Heavy Veh Syst 8:48–59CrossRefGoogle Scholar
  5. 5.
    Pi VN, Hung LX, Tung LA, Long BT (2016) Cost optimization of internal grinding. J Mater Sci Eng 6:291–296.  https://doi.org/10.17265/2161-6221/2016.11-12.004CrossRefGoogle Scholar
  6. 6.
    Li GF, Wang LS, Yang LB (2002) Multi-parameter optimization and control of the cylindrical grinding process. J Mater Process Technol 129:232–236CrossRefGoogle Scholar
  7. 7.
    Gupta R, Shishodia KS, Sekhon GS (2001) Optimization of grinding process parameters using enumeration method. J Mater Process Technol 112:63–67CrossRefGoogle Scholar
  8. 8.
    Pi VN, The PQ, Khiem VH, Huong NN (2013) Cost optimization of external cylindrical grinding. Appl Mech Mater 312:982–989CrossRefGoogle Scholar
  9. 9.
    Warnecke G, Barth C (1999) Optimization of the dynamic behavior of grinding wheels for grinding of hard and brittle materials using the finite element method. CIRP Ann Manuf Technol 48:261–264CrossRefGoogle Scholar
  10. 10.
    Krishna AG, Rao KM (2006) Multi-objective optimisation of surface grinding operations using scatter search approach. J Adv Manuf Technol 29:475–480CrossRefGoogle Scholar
  11. 11.
    Inasaki I (1991) Monitoring and optimization of internal grinding process. CIRP Ann Manuf Technol 400:359–363CrossRefGoogle Scholar
  12. 12.
    Lee CW (2009) Dynamic optimization of the grinding process in batch production. J Manuf Sci Eng Trans ASME 131:61–66Google Scholar
  13. 13.
    Xiao G, Malkin S (1996) On-line optimization for internal plunge grinding. CIRP Ann Manuf Technol 45:287–292CrossRefGoogle Scholar
  14. 14.
    Mikhelkevich VN (1975) Automatic control of grinding. Mechanical Engineering, MoscowGoogle Scholar
  15. 15.
    Bellman R (1960) Dynamic programming. Foreign Literature Publishing House, MoscowzbMATHGoogle Scholar
  16. 16.
    Pereverzev PP, Akintseva AV (2016) Mathematical model for the internal grinding process of a non-circular hole machining. Procedia Eng 150:118–1123.  https://doi.org/10.1016/j.proeng.2016.07.223CrossRefGoogle Scholar
  17. 17.
    Akintseva AV, Pereverzev PP (2017) Modeling the influence of the circle overtravel on the stability of internal grinding process. Procedia Eng 206:1184–1188.  https://doi.org/10.1016/j.proeng.2017.10.615CrossRefGoogle Scholar
  18. 18.
    Pereverzev PP, Akintseva AV (2016) Model of formation of processing errors intragrinding. Russ Eng Res 36(12):1048–1053.  https://doi.org/10.3103/S1068798X16120133CrossRefGoogle Scholar
  19. 19.
    Pereverzev PP, Akintseva AV (2015) Automatic cycles’ multiparametric optimization of internal grinding. Procedia Eng 129:121–126.  https://doi.org/10.1016/j.proeng.2015.12.019CrossRefGoogle Scholar
  20. 20.
    Akintseva AV, Pereverzev PP (129) Complex optimization of parameters for controlling the cycle of internal grinding by the method of dynamic programming. MATEC Web Conf 129:01019CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. P. Pereverzev
    • 1
  • A. V. Akintseva
    • 1
  • M. K. Alsigar
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations