Advertisement

Energy and Fuel Consumption of Agricultural Aggregate

  • M. Ya. Durmanov
  • B. G. Martynov
  • S. V. Spiridonov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The efficiency of an agricultural aggregate (AgA), i.e., a tractor combined with a trailing or mounted implement, consists not just in performance but also in the consumption of fuel per unit of production, or per a hectare of treated soils. The design can be optimized and improved in terms of their quality by developing and implementing practical methods for assessing the efficiency of AgA; this problem is especially relevant when designing a tractor. Energy used to actualize tangent thrust force has to be taken into account; a method which can be used to estimate not only the regular and dynamic components of such tangent force but also the hourly fuel consumption when designing an AgA. Simulation results are presented as the state surfaces of the frequency response (FR), the AgA tangent thrust force, and hourly fuel consumption for variable design parameters. The volume bound by the tangent force state surfaces and the coordinate axes is deemed to be the energy a part of which is spent to actualize the regular tangent force component, whereas the rest is lost as the dynamic tangent force component. By sectioning the FR state surfaces in the longitudinal-vertical plane at any fixed regular AgA travel speed and for the entire range of leading wheel load oscillation frequencies, we can calculate the regular and dynamic components of the tangent force, as well as the hourly fuel consumption. This paper dwells upon the plowing operation of a Kirovets K-744R-05 tractor with a PUN-8-40 plow operating on light soils.

Keywords

Agricultural aggregate Energy consumption Tangent force Fuel consumption Frequency response Frequency characteristic 

Notes

Acknowledgements

The authors would like to thank Vladimir Ivanovich Varavva, a Full Professor, and Valery Petrovich Antipin, an Associate Professor, for their invaluable assistance in writing the manuscript.

References

  1. 1.
    Antipin VP (2012) Energozatraty mashinno-traktornogo agregata (Energy consumption of an agricultural aggregate). Polytech Publishing House, St. Petersburg, p 324Google Scholar
  2. 2.
    Antipin VP, Durmanov MYa, Karshev GV (2017) Proizvoditelnost, energozatraty i resurs mashinno-traktornogo agregata (Performance, energy consumption, and service life of an agricultural aggregate). Polytech Publishing House, St. Petersburg, 484 pGoogle Scholar
  3. 3.
    Lourier AB (1970) Statisticheskaya dinamika selskohozyaystvennykh agregatov (Statistical dynamics of agricultural aggregates). Kolos, Leningrad 376 pGoogle Scholar
  4. 4.
    Lourier AB (1967) Avtomatizatsyya selskohozyaystvennykh agregatov (Automation of agricultural aggregates). Kolos, Leningrad, 264 pGoogle Scholar
  5. 5.
    Goryachkin VP (1968) Sobraniye sochineniy (Collection of works). 2nd ed, vol 1, Kolos, Moscow, 720 pGoogle Scholar
  6. 6.
    Barskiy IB, Anilovich VYa, Kutkov GM (1973) Dinamika traktora (Tractor dynamics). Mashinostroyeniye, Moscow, 280 pGoogle Scholar
  7. 7.
    Kutkov GM (2004) Traktory i avtomobili. Teoriya i tekhnologicheskie svoystva (Tractors and cars. Theory and technological properties). Kolos, Moscow, 504 pGoogle Scholar
  8. 8.
    Markov VA, Shatrov VI (2014) Napravleniya sovershenstvovaniya system avtomaticheskogo upravleniya i regulirovaniya teploenergeticheskikh ustanovok (Focus areas for improvements in automated control systems for heat power units). Bull Bauman MSTU. Mech Eng 5:127–140.  https://doi.org/10.18698/0236-3941-2014-5-127-140CrossRefGoogle Scholar
  9. 9.
    Markov VA, Shatrov VI (2016) Systemy avtomaticheskogo upravleniya i regulirovaniya teploenergeticheskikh ustanovok i tendentsyi ikh sovershenstvovaniya (Ways of improving systems of automatic control and regulation of heat and power plants). Bull Bauman MSTU. Mech Eng 5:96–116.  https://doi.org/10.18698/0236-3941-2016-5-96-116CrossRefGoogle Scholar
  10. 10.
    Markov VA, Shatrov VI (2017) Perspektivniye napravleniya sovershenstvovaniya system avtomaticheskogo upravleniya i regulirovaniya teploenergeticheskikh ustanovok (Promising focus areas for improving automated control systems for heat power units). Bull Bauman MSTU. Mech Eng 4:121–141.  https://doi.org/10.18698/0236-3941-2017-4-121-141CrossRefGoogle Scholar
  11. 11.
    Antipin VP, Karshev GV (2004) Vliyanie konstruktivnykh parametrov traktora i dinamicheskikh kharakteristik dvigatelya na ego energozatraty (How the design parameters of a tractor and the dynamic properties of its engine affect the energy consumption). In: Using the dynamic properties of heat engine processes in design, operations, diagnosis, and repair. RT Academy of Sciences. FAN, Kazan, pp 29–34Google Scholar
  12. 12.
    Boltinsky VN (1949) Rabota traktornogo dvigatelya pri neustanovivsheysya nagruzke (Tractor engine operation under non-steady-state loads). OGIZ-Selkhozgiz, Moscow, p 214Google Scholar
  13. 13.
    Lenin IM, Popyk KG, Malashkin OM et al (1969) Avtomobilnye i traktornye dvigateli (Car and tractor engines). Vysshaya Shkola, Moscow, p 656Google Scholar
  14. 14.
    Krutov VI, Danilov FM, Kuzmik PK et al (1984) Osnovy teorii avtomaticheskogo regulirovaniya (Fundamentals of automatic control theory). Mashinostroyeniye, Moscow, p 368Google Scholar
  15. 15.
    Mokhnatkin EM, Besedina LT (1983) Metodicheskie osnovy rascheta raskhoda masla na ugar (Methodological foundations of calculating the burning oil consumption). Dvigatelestroyenie 6(7):9–14Google Scholar
  16. 16.
    Burstein LM, Kodyanov SV (1984) Opredeleniye raskhoda masla na ugar pri vybore velichiny zazora gilza-porshen (Finding the burning oil consumption when selecting the sleeve-to-piston gap value). Dvigatelestroyeniye 10:8–10Google Scholar
  17. 17.
    Antipin VP (1986) Faktory, opredelyayushie raskhod masla na ugar pri rabote dvigatelya v neustanovivshemsya rejyme (Factors affecting the burning fuel consumption in non-steady-state operations). Dvigatelestroyenie 5:12–13Google Scholar
  18. 18.
    Antipin VP, Sushchevsky MYa, Tabakov YeP (1972) Stend dlya ispytaniya dvigatelya vnutrennego sgoraniya i transmissii (A bench for testing internal combustion engines and transmissions). Certificate No. 353169; published 29.09.72, Bulletin No. 29Google Scholar
  19. 19.
    Antipin VP, Svitkin VV, Sushchevsky MYa, Tabakov YeP (1973) Sposob ispytaniya dvigatelya (Testing method of the engine). Certificate No. 364859, published 29.09.72, Bulletin No. 5Google Scholar
  20. 20.
    Zhdanovsky NS, Kovrigin AI, Skrabak VS et al (1974) Neustanovivshiesya rejymy porshnevykh i gazoturbinnykh dvigateley avtotraktornogo tipa (Non-steady-state operation of piston and gas-turbine engines, autotractortype). Mashinostroyeniye, Leningrad, p 224Google Scholar
  21. 21.
    Antipin VP, Durmanov MYa, Karshev GV, Mikhasenko VI (2006) Iznos dvigatelya na neustanovivshikhsya nagruzochnom, skorostnom i smazochnom rejymakh (Engine wear in non-steady state operations under load, high-speed, or redundant anal lube). Dvigatelestroyenie 1(223):7–9Google Scholar
  22. 22.
    Antipin VP, Gribov SA, Shevtsov AA, Kozlov AV, Crystal ME (1986) Regulyator skorosti pryamogo deystviya dvigatelya vnutrennego sgoraniya (Direct-effect speed controller for internal combustion engines). Certificate No. 1276843, published 15.12.86, Bulletin No.46Google Scholar
  23. 23.
    Barinov KN, Antipin VP, Karpilovich AI, Shevtsov AA, Demakov VM, Shchetinin YuV (1989) Sistema smazki dizelnogo dvigatelya (Diesel engine lubrication system). Certificate No. 1497383, published 30.07.89, Bulletin No. 28Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Ya. Durmanov
    • 1
  • B. G. Martynov
    • 1
  • S. V. Spiridonov
    • 1
  1. 1.St. Petersburg State Forest Technical UniversitySt. PetersburgRussia

Personalised recommendations