Choosing Transmission Gearset for Agricultural Aggregates Based on Energy Consumption

  • V. P. AntipinEmail author
  • M. Ya. Durmanov
  • O. A. Mikhaylov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Performance is a key indicator of agricultural aggregates (AgA), which are tractors aggregated with trailing or mounted implements. What determines AgA performance in plowing is its travel speed and the actual tangent thrust force. Both parameters depend on the gearset, the number of gear modes and gears, as well as the required engine power. The paper dwells upon a method alternative to the existing methods of determining the gearset and gear ratios for gearboxes in agricultural tractors. It is proposed to choose the gearset based on the energy consumption and the functional purpose of an AgA. For a wheel engine AgA based on a Kirovets K-744R-05 tractor, we herein determine the engine power and gear-specific reserve power as well as the transmission gear ratios and gearset which enable the unit to overcome temporary overloads without switching to a higher ratio gear while meeting AgA performance requirements. Minimizing the energy consumption of performing a specific operation reduces fuel and operating costs which ultimately lowers the costs of agricultural products.


Agricultural aggregate Performance Energy consumption Transmission gearset Transmission Power Fuel consumption 



The authors would like to thank Vladimir Ivanovich Varavva, a Full Professor, and Gennady Vladimirovich Karshev, an Associate Professor, for their invaluable assistance in writing the manuscript.


  1. 1.
    Antipin VP (2012) Energozatraty mashinno-traktornogo agregata (Energy consumption of an agricultural aggregate). Polytech Publishing House, St. Petersburg, p 324Google Scholar
  2. 2.
    Antipin VP et al (2017) Proizvoditelnost, energozatraty i resurs mashinno-traktornogo agregata (Performance, energy consumption, and service life of an agricultural aggregate). Polytech Publishing House, St. Petersburg, p 484Google Scholar
  3. 3.
    Lvovsky KYa, Cherpak FA, Serebryakov IN, Shcheltsyn NA (1976) Transmissii traktorov (Tractor transmissions). Mashinostroyeniye, Moscow, 280 pGoogle Scholar
  4. 4.
    Grishkevich AI (1984) Proektirovanie transmissiy avtomobiley: Spravochnik (Vehicle transmission design: handbook). Mashinostroyeniye, Moscow, p 272Google Scholar
  5. 5.
    Sharipov VM (2002) Proektirovanie mekhanicheskikh, gidromekhanicheskikh I gidroobyomnykh peredach traktorov (Designing mechanical, hydro-mechanical, and hydro-volumetric tractor transmissions). MSTU MAMI, Moscow, p 300Google Scholar
  6. 6.
    Vaughan ND, Simner D (2002) Automotive transmissions and drivelines. Butterworth-Heinemann, OxfordGoogle Scholar
  7. 7.
    Gott PG (1991) Changing gears: the development of the automotive transmission. Society of Automotive Engineers, WarrendaleGoogle Scholar
  8. 8.
    Lechner G, Naunheimer H (1999) Automotive transmissions: fundamentals, selection, design, and application. Springer, BerlinGoogle Scholar
  9. 9.
    Birch T, Rockwood C (2001) Automatic transmissions and transaxles. Prentice Hall, Englewood-CliffsGoogle Scholar
  10. 10.
    Markov VA, Shatrov VI (2014) Napravleniya sovershenstvovaniya system avtomaticheskogo upravleniya i regulirovaniya teploenergeticheskikh ustanovok (Focus areas for improvements in automated control systems for heat power units). Bull Bauman MSTU. Mech Eng 5:127–140. Scholar
  11. 11.
    Markov VA, Shatrov VI (2016) Systemy avtomaticheskogo upravleniya i regulirovaniya teploenergeticheskikh ustanovok i tendentsyi ikh sovershenstvovaniya (Ways of improving systems of automatic control and regulation of heat and power plants). Bull Bauman MSTU. Mech Eng 5:96–116. Scholar
  12. 12.
    Markov VA, Shatrov VI (2017) Perspektivniye napravleniya sovershenstvovaniya system avtomaticheskogo upravleniya i regulirovaniya teploenergeticheskikh ustanovok (Promising focus areas for improving automated control systems for heat power units). Bull Bauman MSTU. Mech Eng 4:121–141. Scholar
  13. 13.
    Antipin VP et al (2017) Analiz i utochneniye konstruktivnykh parametrov mashinno-traktornogo agregata na baze traktora K-744R-05 (Analyzing and refining the design specifications of agricultural aggregates based on K-744R-05 tractors). Tractors Agricu Mach 9:37–45Google Scholar
  14. 14.
    Krutov VI (1978) Dvigatel vnutrennego sgoraniya kak reguliruemyiy obyekt (Internal combustion engine as a controllable object). Mashinostroyeniye, Moscow, p 472Google Scholar
  15. 15.
    Vygodsky MYa (1969) Spravochnik po vysshey matematike (Handbook of further mathematics). Nauka, Moscow, 870 pGoogle Scholar
  16. 16.
    Goryachkin VP (1968) Sobraniye sochineniy (Collection of works), 2nd ed, vol 1, Kolos, Moscow, 720 pGoogle Scholar
  17. 17.
    Pantyukhin MG, Bezverkhiy LI, Berezin NA et al (1982) Spravochnik po traktoram “Kirovets” (Handbook on kirovets tractors). Kolos, Moscow, p 271Google Scholar
  18. 18.
    Traktory “Kirovets” K-744R1, K-744R2, K-744R3, K-744R4. Instruktsiya po ekspluatatsyi (Kirovets K-744R1, K-744R2, K-744R3, K-744R4 tractors. User’s Manual). AO Petersburg Tractor Plant, St. Petersburg, 2016, 211 pGoogle Scholar
  19. 19.
    Listopad GYe, Demidov GK, Zonov BD et al (1986) Selkohozyastvenniye i meliorativniye mashiny (Agricultural and Land-Reclamation Machines). Agropromizdat. Moscow, 488 pGoogle Scholar
  20. 20.
    Vinokurov VN, Dyomkin VYe, Markin VG et al (2000) Mashiny, mekhanizmy i oborudovaniye selskogo hozyaystva (Forestry machines, mechanisms, and equipment: a reference book). In: Shatalov VG (ed). MSUF, Moscow, 439 pGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. P. Antipin
    • 1
    Email author
  • M. Ya. Durmanov
    • 1
  • O. A. Mikhaylov
    • 1
  1. 1.St. Petersburg State Forest Technical UniversitySt. PetersburgRussia

Personalised recommendations