Modeling of Dynamic and Economical Characteristics of Life-Saving Device with Flywheel Energy Storage

  • N. N. Barbashov
  • I. V. Leonov
  • K. D. SologubEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


This article will initially consider the life-saving appliance dynamic model accompanied with computation and analysis of its variables. This life-saving appliance can be used in case of fire on the drilling platforms. The flywheel energy storage converts energy of descent to the rotational energy of the flywheel. After the launch, stored energy can be used to rotate the propeller of survival capsule to increase the distance from the fire. This kind of construction allows decreasing the number of maintenance operations. Moreover, there can be lack of energy in emergency cases. It points out one more profit of this appliance. This life-saving appliance is also analyzed from the economical point of view, and the authors have suggested an economical efficiency Criterion as a marker. The results of variables computation and modeling should be taking into account while developing the construction. The modeling analysis shows the great potential of this life-saving appliance as reliable and safe.


Life-saving devices Flywheel Differential gear Displacement of capsule Descend speed Recuperation coefficient Moment of inertia 


  1. 1.
    Judovskiy IM (1999) Recuperativniy makhovichniy privod dlya neprogrammiruemikh avtomatichaskikh akkumulyatorov (Recuperative flywheel drive for non-programmable automatic accumulators). Vestn Mashinostroeniya 4:9–11Google Scholar
  2. 2.
    Talanov BP (1995) Ustroystvo evacuatcii ludey iz mnogoetagnikh zdaniy (The device for evacuation of people from high rise buildings). RF Certificate of authorship No. 2050864Google Scholar
  3. 3.
    Leonov IV, Barbashov NN (2011) Improvement of the mechanical characteristics of the drive of the lifting and transport machines. Izv. Mech Eng 11:24–28Google Scholar
  4. 4.
    Leonov IV (2013) Energy analysis of the cycle of the machine. Izvest vuzov: Eng 3:22–26Google Scholar
  5. 5.
    Leonov IV (2013) Energy analysis of load-lifting machines. Izvest vuzov: Eng 3:50–57Google Scholar
  6. 6.
    Demeulenaere B et al (2006) Ultimate limits for counterweight balancing of crank-rocker four-bar linkages. Trans ASME J Mech Des 128:1272–1284CrossRefGoogle Scholar
  7. 7.
    Tang H-L et al (2010) Triangular Ising antiferromagnets with quenched nonmagnetic impurities. Phys Rev 81:1–5Google Scholar
  8. 8.
    Barbashov NN (2017) Sposob evacuatcii iz burovoy platformi i ustroystvo ego realizatcii (The method of evacuation from the drilling platform and the device for its realization). RF Patent 2615250, 4 Apr 2017Google Scholar
  9. 9.
    Zong Q et al (2007) A robust fault-detection method for elevator hoistway systems. Elevator World 55:68–75Google Scholar
  10. 10.
    Yang J, Song R (2012) Using the braking energy of a railway car. Heilongjiang keji xueyuan xuebao 4:424–427Google Scholar
  11. 11.
    Pickles TS et al (2008) Critical phenomena in a highly constrained classical spin system: Neel ordering from the Coulomb phase. Europhys Lett 84:1–5CrossRefGoogle Scholar
  12. 12.
    Bures Z et al (2012) Hybrid two-stroke motor drive Trans. Transp Sci 5:37–44Google Scholar
  13. 13.
    Babitskiy VI et al (2000) Rezonansniy privod (Resonance drive). RF Certificate of authorship 1544550, 7 Apr 2000Google Scholar
  14. 14.
    Korendyasev AI et al (1992) Rekuperativniy pozitsioner obiyekta-rekuper (Recuperative positioner object-recuper). RF Certificate of authorship 1768382, 15 Oct 1992Google Scholar
  15. 15.
    Gulia NV et al (1982) Ustroystvo spuska ludey iz zdaniy (The device for descent of people from buildings). USSR Certificate of authorship 827082Google Scholar
  16. 16.
    Leonov IV (2011) Sposob upravleniya mekhanisma recuperatcii energii tormogeniya i ustroystvo dlya ego osuscestvleniya (The controlling method for recuperation of energy of descent and the device for its realization). RF Patent 2011102043, 20 Jun 2011Google Scholar
  17. 17.
    Leonov IV, Leonov DI (2009) Teoriya mekhanismov i mashin (The theory of mechanisms and machines). Visshee obrazovanie, MoscowGoogle Scholar
  18. 18.
    Leonov IV, Barbashov NN (2010) Energeticheskaya model peredatochnogo mekhanisma s makhovichnim akkumulyatorom energii (Energy model of a transmission mechanism with a flywheel energy accumulator). Vestnik MGTU 4Google Scholar
  19. 19.
    Barbashov NN, Leonov IV (2012) Dinamichesakaya model podemno transportnoy mashini s akkumulyatorom energii (Dynamic model of lifting transport machine with energy storage). Izvest visshikh uchebnikh zaved “Mashinostroenie” 9:45–50Google Scholar
  20. 20.
    Egorova OV et al (2012) Primenenie sistemi Mathcad v kursovom proektirovanii po teorii mekhanismov i mashin (The application of the Mathsad system in the coursework on the theory of mechanisms and machines). Izdatelstvo MGTU im. N.E.Baumana, MoscowGoogle Scholar
  21. 21.
    Vidal P (1985) Aide memoire d’automatique. Dunod, ParisGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. N. Barbashov
    • 1
  • I. V. Leonov
    • 1
  • K. D. Sologub
    • 1
    Email author
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations