Advertisement

Diagnostics and Forecasting of Defects in Rotation Details

  • L. G. Egorova
  • K. N. Vdovin
  • O. S. Logunova
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In the given paper, ultrasonic installation which allows to carry out automatic diagnostics of quality of details of rotation by a method of ultrasonic scanning is offered and described. The machine makes it possible to automatically control the quality of work rolls, to identify the rolls liable to spalling and delamination of the hardened layer using the ultrasonic scanning method. The application of the proposed machine makes it possible to detect the defects in a mill roll at all production stages. The paper offers a description of the software product, which controls the ultrasonic card, and using an ultrasonic sensor automatically generates and receives ultrasonic signals. The obtained results confirm the guaranteed defect detection in the near-surface layer of the mill roll. The application of the proposed machine makes it possible to detect the defects in a mill roll at all production stages.

Keywords

Rolling rolls Ultrasonic control Defects Ultrasonic method Surface scanning 

References

  1. 1.
    Guan X, Zhang J, Zhou SK, Rasselkorde EM, Abbasi WA (2014) Post-processing of phased array ultrasonic inspection data with parallel computing for nondestructive evaluation. J Nondestr Eval 33:342–351CrossRefGoogle Scholar
  2. 2.
    Abbasi Z, Yuhas D, Zhang L, Basantes A-D, Tehrani NN, Ozevin D, Indacochea E (2018) The detection of burn-through weld defects using noncontact ultrasonics. Materials 11:128–135.  https://doi.org/10.3390/ma11010128CrossRefGoogle Scholar
  3. 3.
    Qiong W, Da-le S, Chang-sheng L, Chun-guang L (2008) Analysis of surface and sub-surface initiated spalling of forged cold work rolls. Eng Fail Anal 15:401–410.  https://doi.org/10.1016/j.engfailanal.2007.01.009CrossRefGoogle Scholar
  4. 4.
    Chiao RY, Hao XH (2005) Coded excitation for diagnostic ultrasound: a system developer’s perspective. IEEE Trans Ultrason Ferroelectr Freq Control 52:160–170CrossRefGoogle Scholar
  5. 5.
    Holmes C, Drinkwater BW, Wilcox PD (2005) Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT E Int 38:701–711.  https://doi.org/10.1016/j.ndteint.2005.04.002CrossRefGoogle Scholar
  6. 6.
    Mann JA, Walker WF (2002) A Constrained adaptive beamformer for medical ultrasound: initial results. In: Proceedings of international ultrasonic symposium, Munich, Germany, 8–11 Oct 2002Google Scholar
  7. 7.
    Sasso M, Cohen-Bacrie C (2005) Medical ultrasound imaging using the fully adaptive beamformer. In: Proceedings of IEEE international conference acoustics, speech, and signal processing, Philadelphia, PA, USA, 19–23 Mar 2005Google Scholar
  8. 8.
    Wang Z, Li J, Wu R (2005) Time-delay- and time-reversal-based robust Capon beamformers for ultrasound imaging. IEEE Trans Med Imag 24:1308–1322.  https://doi.org/10.1109/TMI.2005.857222CrossRefGoogle Scholar
  9. 9.
    Chen CH (2007) Ultrasonic and advanced methods for non-destructive testing and material characterization. World Scientific Publishing Co, SingaporeCrossRefGoogle Scholar
  10. 10.
    Vdovin K, Pivovarova K, Lisovskaya M (2014) The use of thermal analysis to study the structure and properties of roll steels. Met Sci Heat Treat 56:302–305CrossRefGoogle Scholar
  11. 11.
    Vdovin KN, Egorova LG, Armizonov VA, Lisovskaya MA (2012) Installation for automatic ultrasonic inspection of large products. RU patent 119119, 27 Mar 2012Google Scholar
  12. 12.
    Oralkan O, Ergun AS, Johnson JA, Karaman M, Demirci U, Kaviani K, Lee TH, Khuri-Yakub BT (2002) Capacitive micromachined ultrasonic transducers: next generation array for acoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Contr 49:1596–1610.  https://doi.org/10.1109/TUFFC.2002.1049742CrossRefGoogle Scholar
  13. 13.
    Dube N (2005) Introduction to phased array ultrasonic technology applications: R/D tech guideline advanced practical NDT series. Waltham, USAGoogle Scholar
  14. 14.
    Drinkwater W, Wilcox PD (2006) Ultrasonic arrays for non-destructive evaluation: a review. NDT&E Int 525:525–541CrossRefGoogle Scholar
  15. 15.
    Li MH, Lu YL (2005) Accurate direction-of-arrival estimation of multiple sources using a genetic approach. Wirel Commun Mob Comput 5:343–353.  https://doi.org/10.1002/wcm.228CrossRefGoogle Scholar
  16. 16.
    Lupien V (2007) Principles of phased array ultrasound for nondestructive testing. Mater Eval 24:24–32Google Scholar
  17. 17.
    Whittle AC (2006) Preliminary steps to validate a beam model for ultrasonic phased arrays. Insight 48:221–227CrossRefGoogle Scholar
  18. 18.
    Kremkau F (2002) Diagnostic ultrasound: principles and instruments. W.B. Saunders, Philadelphia, USAGoogle Scholar
  19. 19.
    Posokhov IA, Logunova OS (2014) Classification method of sulfur print image based on characteristics of intensity histogram. WIT Trans Inform Commun Technol 56:19–29CrossRefGoogle Scholar
  20. 20.
    Egorova LG, Kukhta IB (2016) Technology of roll production for cold rolling of strip using electroslag remelting method. Int J Adv Manuf Technol 86:547–556CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • L. G. Egorova
    • 1
  • K. N. Vdovin
    • 1
  • O. S. Logunova
    • 1
  1. 1.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations