Advertisement

Diesel Engine Preheating and Starting Simulation with Modelica Language

  • A. Malozemov
  • V. Bondar
  • G. Malozemov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article presents the results of mathematical model and software development for the simulation of diesel engine preheating and starting with the Modelica language. The model is based on the energy and mass balance method, Godunov scheme, Wiebe, and Razleytsev equations, and is a library of Modelica classes which describe the processes in engine systems and mechanisms including air and electrical starters, preheaters, and start facilities tools. The mathematical model includes the description of different boundary conditions, acausal connections, and basic and complex elements, such as a(n) electric and fuel coolant preheater, air heater in gas pipes, and compressed air starting system. The created mathematical model and software provides high speed calculation, reliability and accuracy of results, that is confirmed by comparison with experimental data. The possibility of conjugate calculation of stationary and transient multi-domain processes in various engine systems and mechanisms is ensured.

Keywords

Diesel engine Preheating Starting Mathematical model Software Modelica language 

References

  1. 1.
    AVL List GmbH (2017). http://www.avl.com. Accessed 15 Nov 2017
  2. 2.
    Ricardo pln (2017). http://www.ricardo.com. Accessed 15 Nov 2017
  3. 3.
    Gamma Technologies inc (2017). http://www.gtisoft.com. Accessed 15 Nov 2017
  4. 4.
    Dassault Systems (2017). http://www.3ds.com. Accessed 15 Nov 2017
  5. 5.
    Universitat Politecnica de Valencia (2017). https://www.upv.es. Accessed 15 Nov 2017
  6. 6.
    Politecnico di Milano (2017). http://www.cmt.upv.es/OpenWam.aspx. Accessed 15 Nov 2017
  7. 7.
    Yenikeyev RD, Chernousov AA (2012) Design and implementation of a software package for analysis and synthesis of complex technical objects. Vestnik UGATU 50:60–68Google Scholar
  8. 8.
    Modelica association (2017). http://www.modelica.org. Accessed 15 Nov 2017
  9. 9.
    Bondar VN, Malozemov AA, Kukis VS (2017) Mathematical model of processes in the compressed air starting system of diesel engine. Nauchnyye problemy transporta Sibiri i Dalnego Vostoka 2:64–70Google Scholar
  10. 10.
    Fletcher CAJ (1988) Computational techniques for fluid dynamics: Fundamental and general techniques. Springer, Berlin.  https://doi.org/10.1007/978-3-642-97035-1zbMATHGoogle Scholar
  11. 11.
    Godunov SK (1959) A Difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47:271–306 (translated US JPRS 7225, Nov, 1960)Google Scholar
  12. 12.
    Holman JP (1997) Heat transfer. McGraw-Hill, New YorkGoogle Scholar
  13. 13.
    Rozenblit GB (1977) Heat transfer in diesel engines. Mashinostroyeniye, MoscowGoogle Scholar
  14. 14.
    Kavtaradze RZ (2007) Local heat transfer in piston engines. Bauman MSTU, MoscowGoogle Scholar
  15. 15.
    Woschni G, Anisits F (1974) Experimental investigation and mathematical presentation of rate of heat release in diesel engines dependent upon engine operating conditions. SAE Technical Paper 740086.  https://doi.org/10.4271/740086
  16. 16.
    Fischer R (1999) Elektrische maschinen. Hanser-Verlag, MunichGoogle Scholar
  17. 17.
    Shayler J, Leong D, Murphy M (2005) Contributions to engine friction during cold, low-speed running and the dependence on oil viscosity. SAE Paper 2005–01–1654.  https://doi.org/10.4271/2005-01-1654
  18. 18.
    Wiebe II (1970) Brennverlauf und kreisprozess von verbrennungsmotoren. VEB Verlag Technik, BerlinGoogle Scholar
  19. 19.
    Woschni G, Anisits F (1973) Eine methode zur vorausberechnung der änderung des brennverlaufs mittelschnellaufender dieselmotoren bei geänderten betriebsbedingungen. MTZ 34:160–165Google Scholar
  20. 20.
    Razleytsev NF (1980) Modeling and optimization of the combustion process in diesel engines. Vishcha shkola, KharkovGoogle Scholar
  21. 21.
    Zander L, Bradamante E (1998) Exhaust system warm-up analysis using the WAVE code. Ricardo Software, GothenburgGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Estet-Center SchoolChelyabinskRussia

Personalised recommendations