Bioavailability of Betalains

  • Erum Akbar Hussain
  • Zubi Sadiq
  • Muhammad Zia-Ul-Haq


Primitively the term bioavailability was used in materia medica in order to describe the rate and extent of action of a drug. Many definitions of bioavailability were recommended, but the more accepted one is the fractional part of any ingested compound that enters the systemic circulation and the particular sites where this compound maintains its biological action. Alternatively in simple words, it is quantitative measure of ingested betalains which exerts its advantageous biological activities in specific tissues [1].


  1. 1.
    D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: Status and controversies. International Journal of Molecular Sciences, 11(4), 1321–1342.CrossRefGoogle Scholar
  2. 2.
    Pavokovic, D., & Krsnik-Rasol, M. (2011). Complex biochemistry and biotechnological production of betalains. Food Technology and Biotechnology, 49(2), 145.Google Scholar
  3. 3.
    Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822.CrossRefGoogle Scholar
  4. 4.
    Livrea, M. A., & Tesoriere, L. (2006). Health benefits and bioactive components of the fruits from Opuntia ficus-indica [L.] Mill. Journal of the Professional Association for Cactus Development, 8(1), 73–90.Google Scholar
  5. 5.
    Esatbeyoglu, T., Wagner, A. E., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin—A food colorant with biological activity. Molecular Nutrition & Food Research, 59(1), 36–47.CrossRefGoogle Scholar
  6. 6.
    Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2016). Biological activities of plant pigments betalains. Critical Reviews in Food Science and Nutrition, 56(6), 937–945.CrossRefGoogle Scholar
  7. 7.
    Neelwarne, B. (Ed.). (2012). Red beet biotechnology: Food and pharmaceutical applications. New York: Springer Science & Business Media.Google Scholar
  8. 8.
    Pavokovic, D., & Krsnik-Rasol, M. (2011). Complex biochemistry and biotechnological production of betalains. Food Technology and Biotechnology, 49(2), 145.Google Scholar
  9. 9.
    Khan, M. I. (2016). Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Comprehensive Reviews in Food Science and Food Safety, 15(2), 316–330.CrossRefGoogle Scholar
  10. 10.
    Azeredo, H. (2009). Betalains: Properties, sources, applications, and stability–a review. International Journal of Food Science & Technology, 44(12), 2365–2376.CrossRefGoogle Scholar
  11. 11.
    Walkowiak-Tomczak, D. (2002). Microbiological denitrification of red beet juice. European Food Research and Technology, 215(5), 401–406.CrossRefGoogle Scholar
  12. 12.
    Schliemann, W., Cai, Y., Degenkolb, T., Schmidt, J., & Corke, H. (2001). Betalains of Celosia argentea. Phytochemistry, 58(1), 159–165.CrossRefGoogle Scholar
  13. 13.
    Khan, M. I., & Giridhar, P. (2015). Plant betalains: Chemistry and biochemistry. Phytochemistry, 117, 267–295.CrossRefGoogle Scholar
  14. 14.
    Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000) Natural Pigments: Carotenoids, Anthocyanins, and Betalains—Characteristics, Biosynthesis, Processing, and Stability, Critical Reviews in Food Science and Nutrition, 40, 173–289CrossRefGoogle Scholar
  15. 15.
    Pourrat, H., Lejeune, B., Regerat, F., & Pourrat, A. (1983). Purification of red beetroot dye by fermentation. Biotechnology Letters, 5(6), 381–384.CrossRefGoogle Scholar
  16. 16.
    Vergeront, T. A., Von Elbe, J. H., & Amundson, C. H. (1980). Large-scale isolation of betalains by gel filtration. Process Biochemistry, 15(2), 15.Google Scholar
  17. 17.
    Brenner, D. M., Baltensperger, D. D., Kulakow, P. A., Lehmann, J. W., Myers, R. L., Slabbert, M. M., & Sleugh, B. B. (2010). Genetic resources and breeding of Amaranthus. Plant Breeding Reviews, 19, 227–285.Google Scholar
  18. 18.
    Teutonico, R. A., & Knorr, D. (1985). Amaranth: Composition, properties, and applications of a rediscovered food crop. Food Technology (USA), 39, 49.Google Scholar
  19. 19.
    Singh, G., Kawatra, A., & Sehgal, S. (2001). Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 56(4), 359–364.CrossRefGoogle Scholar
  20. 20.
    Socaciu, C. (Ed.). (2007). Food colorants: Chemical and functional properties. Boca Raton: CRC Press.Google Scholar
  21. 21.
    Cai, Y., Sun, M., & Corke, H. (1998). Colorant properties and stability of Amaranthus betacyanin pigments. Journal of Agricultural and Food Chemistry, 46(11), 4491–4495.CrossRefGoogle Scholar
  22. 22.
    Cai, Y. Z., Sun, M., & Corke, H. (2005). Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science & Technology, 16(9), 370–376.CrossRefGoogle Scholar
  23. 23.
    Cai, Y., Sun, M., & Corke, H. (2001). Identification and distribution of simple and acylated betacyanins in the Amaranthaceae. Journal of Agricultural and Food Chemistry, 49(4), 1971–1978.CrossRefGoogle Scholar
  24. 24.
    Cai, Y., Sun, M., Wu, H., Huang, R., & Corke, H. (1998). Characterization and quantification of betacyanin pigments from diverse Amaranthus species. Journal of Agricultural and Food Chemistry, 46(6), 2063–2070.CrossRefGoogle Scholar
  25. 25.
    Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.CrossRefGoogle Scholar
  26. 26.
    Oleszek, W., Junkuszew, M., & Stochmal, A. (1999). Determination and toxicity of saponins from Amaranthus cruentus seeds. Journal of Agricultural and Food Chemistry, 47(9), 3685–3687.CrossRefGoogle Scholar
  27. 27.
    Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216(4), 303–311.CrossRefGoogle Scholar
  28. 28.
    Stintzing, F. C., Schieber, A., & Carle, R. (1999). Amino acid composition and betaxanthin formation in fruits from Opuntia ficus-indica. Planta Medica, 65(7), 632–635.CrossRefGoogle Scholar
  29. 29.
    Stintzing, F. C., Schieber, A., & Carle, R. (2001). Phytochemical and nutritional significance of cactus pear. European Food Research and Technology, 212(4), 396–407.CrossRefGoogle Scholar
  30. 30.
    Pavokovic, D., Rusak, G., Besendorfer, V., & Krsnik-Rasol, M. (2009). Light-dependent betanin production by transformed cells of sugar beet. Food Technology and Biotechnology, 47, 153–158.Google Scholar
  31. 31.
    Stintzing, F.C., & Carle, R. 2008. Analysis of betalains. In Food colorants: Chemical and functional properties, ed. C. Socaciu, 507–520. Boca Raton: CRC Press.Google Scholar
  32. 32.
    Guevara, J.C., Suassuna, p. & Felker, P. (2009). Opuntia forage production systems: status and prospects for rangeland application. Rangeland Ecology and Management, 62, 428−434.CrossRefGoogle Scholar
  33. 33.
    Bellec, F. L., Vaillant, F., & Imbert, E. (2006). Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits, 61, 237–250.CrossRefGoogle Scholar
  34. 34.
    Vaillant, F., Pérez, A., Dávila, I., Dornier, M., & Reynes, M. (2005). Colorant and antioxidant properties of red-purple pitahaya (Hylocereus sp.). Fruits, 60, 1–10.CrossRefGoogle Scholar
  35. 35.
    Frank, T., Stintzing, F. C., Carle, R., Bitsch, I., Quaas, D., Gabriele, S., Bitsch, R., & Netzel, M. (2005). Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacological Research, 52, 290–297CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erum Akbar Hussain
    • 1
  • Zubi Sadiq
    • 1
  • Muhammad Zia-Ul-Haq
    • 1
  1. 1.Lahore College for Women UniversityLahorePakistan

Personalised recommendations