Advertisement

Wealth Distribution

  • Gianfranco Tusset
Chapter

Abstract

This chapter begins with Michal Kalecki’s witty epigram, quoted by Josef Steindl (Random Process and the Growth of Firms. A study of the Pareto Law. Vienna: Griffin & Co., 1965, p. 18): “Economics consists of theoretical laws which nobody has verified and empirical laws which nobody can explain.” Never more than in the case of the empirical Pareto law has Kalecki’s witticism seemed so appropriate. Whether Pareto’s law is understandable or not, econophysicists consider the Pareto curve one of the forerunners of econophysics. The invariant distribution of income over time and space was clearly an economic phenomenon that economists were unable to account for or predict. Physicists were able to offer a different interpretation of the Pareto curve, based on appropriate methods and approaches, that contained it within the broader analysis of complex systems (see Richmond et al. Econophysics & Physical Economics. Oxford: Oxford University Press, 2013, p. 16 ff.). Pareto law is introduced here as a stage in the journey toward econophysics. Its empirical features generated different interpretations, and now that it is largely a matter for the econophysicists many issues remain concerning its stability and universality, the mobility among different classes of income, and so on.

References

  1. Amoroso, L. 1925. “Ricerche intorno alla curva dei redditi.” Annali di matematica pura e applicata. 2(1): 123–159.CrossRefGoogle Scholar
  2. Amoroso, L. 1949. “Pareto matematico ed economista.” In Amoroso et al. Vilfredo Pareto, L’economista e il sociologo. Milan: Malfasi. 1–19.Google Scholar
  3. Bagni, T. 1915. Teoria matematica dei fenomeni collettivi. Florence: Barbèra.Google Scholar
  4. Benini, R. 1897 (2001). “On Some Curves Described by Economic Phenomena Related to the Income Curve or That of Wealth.” In Roots of the Italian School of Economics and Finance: From Ferrara (1857) to Einaudi (1944), edited by Mario Baldassarri and Pierluigi Ciocca. Houndmills: Palgrave.Google Scholar
  5. Benzi, M. 1988. “Un ‘Probabilista Neoclassico’: Francesco Paolo Cantelli.” Historia Mathematica 15: 53–72.Google Scholar
  6. Bernardelli, H. 1943. “The Stability of the Income Distribution.” Sankhyā: The Indian Journal of Statistics 6(4): 351–362.Google Scholar
  7. Bordin, A. 1933. La teoria dell’equilibrio e gli schemi probabilistici. Bellinzona: Leins & Vescovi.Google Scholar
  8. Bordin, A. 1935a. “Il significato di alcune moderne teorie matematiche di dinamica economica.” Giornale degli economisti e rivista di statistica. 75: 161–210; 369–421; 580–611.Google Scholar
  9. Bordin, A. 1935b. Il contenuto della dinamica economica. Venice: Libreria Emiliana Editrice.Google Scholar
  10. Bordin, A. 1939. “Le teorie economiche di A. Cournot e l’ordinamento corporativo.” In Amoroso et al. Cournot nella economia e nella filosofia. Padua: Cedam, 183–226.Google Scholar
  11. Brambilla F. 1940. “Rappresentazione matematica ed interpretazione della curva dei redditi”. Rivista Internazionale di Scienze Sociali, 48(2): 166–193.Google Scholar
  12. Bresciani-Turroni, C. 1939. “Annual Survey of Statistical Data: Pareto’s Law and the Index of Inequality of Incomes”. Econometrica 7.4:107–33.Google Scholar
  13. Cantelli, F.P. 1921a. “Sulla deduzione delle leggi di frequenza da considerazioni di probabilità.” Metron, 1(3): 83–91.Google Scholar
  14. Cantelli, F.P. 1921b. “Sulle applicazioni del calcolo delle probabilità alla fisica molecolare.” Metron, 1(1), 157–183.Google Scholar
  15. Castelnuovo, G. 1919. Calcolo delle probabilità. Milan: Società Editrice Dante Alighieri.Google Scholar
  16. Champernowne, D.G. 1953. “A model of income distribution.” The Economic Journal 63(250): 318–351.CrossRefGoogle Scholar
  17. Cockshott, W.P., A.F. Cottrell, G.J. Michaelson, I.P. Wright, and V.M. Yakovenko. 2009. Classical Econophysics. London & New York: Routledge.Google Scholar
  18. Crooks, G.E. 2015. “The Amoroso distribution.” arXiv preprint arXiv:1005.3274. Berkley.Google Scholar
  19. D’Addario, R. 1936. “Le trasformate euleriane.” Annali dell’Istituto di Statistica dell’Università di Bari. 8. Bari: Macrì.Google Scholar
  20. D’Addario, R. 1949. “Ricerche sulla curva dei redditi.” in Amoroso et al., Vilfredo Pareto. L’economista e il sociologo. Milan: Malfasi. 222–44.Google Scholar
  21. Gibrat, R. 1931. Les inégalités économiques, Paris: Sirey.Google Scholar
  22. Gini, C. 1921. “Measurement of Inequality of Incomes.” Economic Journal 31.3:124–26.CrossRefGoogle Scholar
  23. Guttmann, Y.M. 1999. The Concept of Probability in Statistical Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Kalecki, M. 1945. “On the Gibrat Distribution.” Econometrica 13: 161–170.CrossRefGoogle Scholar
  25. Kleiber, C. and S. Kotz. 2003. Statistical Size Distributions in Economics and Actuarial Sciences. Hoboken: Wiley.CrossRefGoogle Scholar
  26. Maccabelli, T. 2009. “Measuring Inequality: Pareto’s Ambiguous Contribution.” History of Political Economy 41(1): 183–208.CrossRefGoogle Scholar
  27. Mandelbrot, B. 1960. “The Pareto-Lévy Law and the Distribution of Income.” International Economic Review 1(2): 79–106.CrossRefGoogle Scholar
  28. March, L. 1898. “Quelques exemples de distribution des salaries.” Journal de la Societé statistique de Paris: 193–206 and 241–248.Google Scholar
  29. Mortara, Giorgio. 1911. “Note di economia induttiva: Sulla distribuzione dei redditi”. Giornale degli economisti e rivista di statistica 22.5:455–71.Google Scholar
  30. Pareto, V. 1896 (1965). “La répartition des revenus.” In Pareto. “Ecrits sur la courbe de la répartition de la richesse.” Œuvres complete. 8, Genève: Droz. 16–19.Google Scholar
  31. Pareto, V. 1906 (2014). Manuale di economia politica. English edition: Manual of Political Economy. 2014 (ed. by A. Montesano, A. Zanni, L. Bruni, J.C. Chipman, and M. McLure). Oxford: Oxford University Press.Google Scholar
  32. Pareto, V. 1916 (1935). Trattato di Sociologia Generale, 3 vols. English edition: The Mind and Society. A Treatise on General Sociology. 2 vols. 1935. New York: Dover. [Figure 5.1].Google Scholar
  33. Persky J. 1992. “Pareto’s Law.” The Journal of Economic Perspectives 6(2): 181–192.CrossRefGoogle Scholar
  34. Pietra, G. 1935. “Intorno alla discordanza fra gli indici di variabilità e di concentrazione”. Bulletin de l’Institut international de statistique 28:171–91.Google Scholar
  35. Ricci, U. 1916. “L’indice di variabilità e la curva dei redditi”. Giornale degli Economisti e Rivista di Statistica 27(9):177–228.Google Scholar
  36. Richmond P., J. Mimkes, and S. Hutzler. 2013. Econophysics & Physical Economics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Steindl, J. 1965. Random Process and the Growth of Firms. A study of the Pareto Law. Vienna: Griffin & Co.Google Scholar
  38. Vinci, F. 1921. “Nuovi contributi allo studio della distribuzione dei redditi.” Giornale degli economisti e Rivista di Statistica 61(32): 365–369.Google Scholar
  39. Vinci, F. 1924. “Calcolo delle probabilità e distribuzione dei redditi nel pensiero di Pareto.” Giornale degli economisti e Rivista di Statistica 64: 127–29.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gianfranco Tusset
    • 1
  1. 1.University of PadovaPadovaItaly

Personalised recommendations