Advertisement

Galilean Economics

  • Gianfranco Tusset
Chapter

Abstract

Giving priority to scientific rigor, Galileo obliged the proto-economists to adopt his criteria (observation, experimentation, and mathematization), prompting a turning point in the strengthening tendency to trust in numbers. The methodological rigor guaranteed by mathematics was gradually becoming established as requisite for any scientific enterprise. In the merchants’ world, numbers were simply a way to trade with more certainty, while in Galileo’s scientific world, applied (not pure) mathematics was needed to understand and manage any economic relationship. Galileo pushed mathematics toward instrumental uses, strengthening interest in the use of mathematics in the hard sciences, but also drawing the attention of social thinkers, beginning with the monetarist ones.

References

  1. Artom, E. 1937. “Proprietà elementari delle figure del piano e dello spazio.” In Berzolari, G. Vivanti, D. Gigli. Enciclopedia delle matematiche elementari. II. Milan: Hoepli. 49–118.Google Scholar
  2. Bellone, E. 1992. “Il significato dell’opera di Galilei nella storia delle scienza e nella filosofia della scienza.” In Occasioni Galileiane. Trieste: Edizioni LINT.Google Scholar
  3. Bellone, E. 2010. Galilei e la scienza moderata. Turin: UTET.Google Scholar
  4. Bianchini, M. 1982. Alle origini della scienza economica. Parma: Editrice Studium Parmense.Google Scholar
  5. Bousquet G.-H. and J. Roussier (1958), “De Re Numaria Quoad Fieri Potuit Geometrice Tractata ou De la Monnaie. Traitée autant que possible selon la méthode mathématique per Giovanni Ceva.” Revue d’Histoire Economique et Sociale 36(2): 129–169.Google Scholar
  6. Boven, P. 1912. Les Applications Mathématiques a l’Economie Politique. Lausanne: Rouge & C.Google Scholar
  7. Carli, G.R. 1751–54(1804). Dell’origine e del commercio delle monete in Scrittori classici italiani di economia politica. Milan: Destefanis. [Figure 2.1].Google Scholar
  8. Copernicus, N. 1526. Monetae cudendae ratio.Google Scholar
  9. Corona R.M. 2013. “De Galileo a Walras: el largo idilio entre las ciencias sociales y naturales”. Interdisciplina. 1 (1): 87–110.Google Scholar
  10. Davanzati, B. 1581 (1804). Lezione delle monete, in Scrittori classici italiani di economia politica. Milan: Destefanis [Figure 2.1].Google Scholar
  11. Drake, S. 1999. Essays on Galileo and the History and Philosophy of Science. I. Toronto: University of Toronto Press.Google Scholar
  12. Einstein, A. 1934. “On the Method of Theoretical Physics.” Philosophy of Science. 1(2): 163–9.CrossRefGoogle Scholar
  13. Evangelisti, P. 2017. Il pensiero economico nel Medioevo. Ricchezza, povertà, mercato e moneta. Rome: Carocci.Google Scholar
  14. Galiani, F. 1750 (1803). Della moneta, in Scrittori Classici Italiani di Economia Politica. 4 Milan: Destefanis [Figure 2.1].Google Scholar
  15. Galilei, G. 1623 (1896) Il Saggiatore. In Le Opere di Galileo Galilei. VI. Florence: Barbera.Google Scholar
  16. Galilei, G. 1632 (1953). Dialogue Concerning the Two Chief World Systems. Translated by S. Drake. Berkeley and Los Angeles: University of California Press. First Italian edition Dialogo sopra i massimi sistemi 1632.Google Scholar
  17. Geymonat. L. 1970. “Galileo Galilei ” In L. Geymonat, Storia del pensiero filosofico e scientifico. Vol. 2. Il Cinquecento – Il Seicento. Milan: Garzanti.Google Scholar
  18. Greenacre, M. 2007. Correspondence Analysis in Practice. Boca Raton: Chapman & Hall.CrossRefGoogle Scholar
  19. Grunbaum, B. and G.C. Shepard. 1995. “Ceva, Menelaus, and the Area Principle.” Mathematics Magazine 68(4): 254–268.CrossRefGoogle Scholar
  20. Le Goff, J. 1977. Tempo della Chiesa e tempo del mercante. Turin: Einaudi.Google Scholar
  21. Lind, H. 1993. A Note on Fundamental Theory and Idealizations in Economics and Physics. The British Journal for the Philosophy of Science 44(3): 493–503.CrossRefGoogle Scholar
  22. Lowry, S.T. 1974. “The Archeology of the Circulation Concept in Economic Theory.” Journal of the History of Ideas. 35(3): 429–444.CrossRefGoogle Scholar
  23. Marcelli, U. 1955. “La questione monetaria studiata da Gian Rinaldo Carli.” Archivio storico italiano 113: 45–72.Google Scholar
  24. Masè-Dari, E. 1935. Un precursore della econometria. Il saggio di Giovanni Ceva “De Re Numaria”. Modena: Università degli Studi di Modena.Google Scholar
  25. McCauley, J.L. 2009. Dynamics of Markets. The New Financial Economics. Cambridge: Cambridge University Press. 2nd ed. [Figures 8.1, 8.2].Google Scholar
  26. Montanari, G. 1687 (1804). Della Moneta. Trattato mercantile, in Scrittori Classici Italiani di Economia Politica. Milan: Destefanis. [Figure 2.1].Google Scholar
  27. Muratori, L. 1749. Della Pubblica Felicità. Lucca.Google Scholar
  28. Nicolini, F. 1878. “Un Antico Economista Matematico.” Giornale degli Economisti 8: 11–23.Google Scholar
  29. Porter, T.M. 1995. Trust in Numbers. The Pursuit of Objectivity in Science and Public Life. Princeton: Princeton University Press.Google Scholar
  30. Shaw, M.C. 2001., Engineering Problem Solving. A Classical Perspective. Norwich: W. Andrew Publishing.Google Scholar
  31. Slanina, F. 2014. Essentials of Econophysics Modelling. Oxford: Oxford University Press.Google Scholar
  32. Theocharis, R.D. 1983. Early Developments in Mathematical Economics. London: Macmillan.CrossRefGoogle Scholar
  33. Vasco, G. 1772 (1804). Della moneta. Saggio politico. In Scrittori Classici Italiani di Economia Politica. 33. Milan: Destefanis [Figure 2.1].Google Scholar
  34. Ventrice, P. 1995. “La nozione di matematica mista tra meccanica e “techne” prima e dopo Galilei.” In Istituto Veneto di Scienze, Lettere ed Arti. Galileo Galilei e la cultura veneziana. Venice: 191–241.Google Scholar
  35. Villiers, M. de. 1995. “An alternative introduction to proof in dynamic geometry.” Micromath, 11(1): 14–19.Google Scholar
  36. Wisan, W.L. 1978. “Galileo’s scientific method: A reexamination.” In R.E Butts & J.C. Pitt, eds. New Perspectives on Galileo. Dordrecht and Boston: Reidel. 1–57.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gianfranco Tusset
    • 1
  1. 1.University of PadovaPadovaItaly

Personalised recommendations