Sensing and Monitoring

  • Hassan Karimi-MalehEmail author
  • Aliasghar Beheshti
  • Fatemeh Karimi
  • Mehdi Shabani-Nooshabadi
  • Mohammad Reza Ganjali
  • Morteza Rezapour
Part of the Carbon Nanostructures book series (CARBON)


This chapter discusses sensing and monitoring water pollutants using carbon nanotube (CNT)-based electrochemical methods. The classes of the electrochemical methods reported for monitoring water pollutants have been described in detail, and the role of CNTs in analytical sensors has been discussed. CNTs are commonly used for modifying electrochemical sensors for water pollutants due to their high surface area and good electrical conductivity.



This work was supported by the Quchan University of Advanced Technology, Quchan, Islamic Republic of Iran.

References and Future Readings

  1. 1.
    Mijangos, L., Ziarrusta, H., Olivares, M., Zuloaga, O., Möder, M., Etxebarria, N., Prieto, A.: Simultaneous determination of 41 multiclass organic pollutants in environmental waters by means of polyethersulfone microextraction followed by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 410(2), 615–632 (2018)CrossRefGoogle Scholar
  2. 2.
    Mohamed, M.E., Frag, E.Y., Mohamed, M.A.: A newly validated and characterized spectrophotometric method for determination of a three water pollutants metal ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 189, 239–249 (2018)CrossRefGoogle Scholar
  3. 3.
    do Nascimento, M.T.L., de Oliveira Santos, A.D., Felix, L.C., Gomes, G., e Sá, M.d.O., da Cunha, D.L., Vieira, N., Hauser-Davis, R.A., Neto, J.A.B., Bila, D.M.: Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil. Ecotoxicol. Environ. Saf. 149, 197–202 (2018)Google Scholar
  4. 4.
    Hounslow, A.: Water Quality Data: Analysis and Interpretation. CRC Press, Boca Raton (2018)CrossRefGoogle Scholar
  5. 5.
    Lu, F., Astruc, D.: Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 356, 147–164 (2018)CrossRefGoogle Scholar
  6. 6.
    Sharma, B., Boruah, P.K., Yadav, A., Das, M.R.: TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6(1), 134–145 (2018)CrossRefGoogle Scholar
  7. 7.
    Dong, C., Lu, J., Qiu, B., Shen, B., Xing, M., Zhang, J.: Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl. Catal. B 222, 146–156 (2018)CrossRefGoogle Scholar
  8. 8.
    Ridruejo, C., Alcaide, F., Álvarez, G., Brillas, E., Sirés, I.: On-site H2O2 electrogeneration at a CoS2-based air-diffusion cathode for the electrochemical degradation of organic pollutants. J. Electroanal. Chem. 808, 364–371 (2018)CrossRefGoogle Scholar
  9. 9.
    Salvo, A., La Torre, G.L., Mangano, V., Casale, K.E., Bartolomeo, G., Santini, A., Granata, T., Dugo, G.: Toxic inorganic pollutants in foods from agricultural producing areas of Southern Italy: level and risk assessment. Ecotoxicol. Environ. Saf. 148, 114–124 (2018)CrossRefGoogle Scholar
  10. 10.
    Raji, M., Oyeniyi, Y.: Distribution and types of water-borne bacterial pathogens in River Sokoto, Nigeria and their health implication. Afr. J. Clin. Exp. Microbiol. 18(4), 198–204 (2018)CrossRefGoogle Scholar
  11. 11.
    Magi, E., Di Carro, M., Mirasole, C., Benedetti, B.: Combining passive sampling and tandem mass spectrometry for the determination of pharmaceuticals and other emerging pollutants in drinking water. Microchem. J. 136, 56–60 (2018)CrossRefGoogle Scholar
  12. 12.
    Tankiewicz, M., Biziuk, M.: Fast, sensitive and reliable multi-residue method for routine determination of 34 pesticides from various chemical groups in water samples by using dispersive liquid–liquid microextraction coupled with gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 410(5), 1533–1550 (2018)CrossRefGoogle Scholar
  13. 13.
    Miyawaki, T., Tobiishi, K., Takenaka, S., Kadokami, K.: A rapid method combining microwave-assisted extraction and gas chromatography-mass spectrometry with a database, for determining organochlorine pesticides and polycyclic aromatic hydrocarbons in soils and sediments. Soil Sedim. Contam. Int. J. 27(1), 31–45 (2018)CrossRefGoogle Scholar
  14. 14.
    Háková, M., Havlíková, L.C., Chvojka, J., Solich, P., Šatínský, D.: An on-line coupling of nanofibrous extraction with column-switching high performance liquid chromatography – a case study on the determination of bisphenol A in environmental water samples. Talanta 178, 141–146 (2018)CrossRefGoogle Scholar
  15. 15.
    Duarte, E.H., Casarin, J., Sartori, E.R., Tarley, C.R.T.: Highly improved simultaneous herbicides determination in water samples by differential pulse voltammetry using boron-doped diamond electrode and solid phase extraction on cross-linked poly (vinylimidazole). Sens. Actuators B Chem. 255, 166–175 (2018)CrossRefGoogle Scholar
  16. 16.
    Selvan, K.S., Narayanan, S.S.: Synthesis and characterization of carbon nanotubes/asymmetric novel tetradentate ligand forming complexes on PIGE modified electrode for simultaneous determination of Pb (II) and Hg (II) in sea water, Lake water and well water using anodic stripping voltammetry. J. Electroanal. Chem. 810, 176–784 (2018)CrossRefGoogle Scholar
  17. 17.
    Biver, M., Filella, M.: Selective determination of niobium in natural waters at the low ng L−1 level by differential pulse cathodic stripping voltammetry in the presence of pyrogallol red. Sci. Total Environ. 615, 1406–1410 (2018)CrossRefGoogle Scholar
  18. 18.
    Alavi-Tabari, S.A., Khalilzadeh, M.A., Karimi-Maleh, H.: Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 811, 84–88 (2018)CrossRefGoogle Scholar
  19. 19.
    Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., Karimi-Maleh, H.: Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 176, 208–213 (2018)CrossRefGoogle Scholar
  20. 20.
    Bijad, M., Karimi-Maleh, H., Farsi, M., Shahidi, S.-A.: An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Measur. Charact. 12(1), 634–640 (2018)CrossRefGoogle Scholar
  21. 21.
    Trtić-Petrović, T., Dimitrijević, A., Zdolšek, N., Đorđević, J., Tot, A., Vraneš, M., Gadžurić, S.: New sample preparation method based on task-specific ionic liquids for extraction and determination of copper in urine and wastewater. Anal. Bioanal. Chem. 410(1), 155–166 (2018)CrossRefGoogle Scholar
  22. 22.
    Yan, Z., Fu, B., Chen, J., Liu, T., Li, K.: Voltammetric determination of Bisphenol A based on its anodic deposition at Chitosan-Graphene modified glassy carbon electrode under UV irradiation. Int. J. Electrochem. Sci. 13, 1556–1567 (2018)CrossRefGoogle Scholar
  23. 23.
    Li, P.-H., Li, Y.-X., Chen, S.-H., Li, S.-S., Jiang, M., Guo, Z., Liu, J.-H., Huang, X.-J., Yang, M.: Sensitive and interference-free electrochemical determination of Pb (II) in wastewater using porous Ce–Zr oxide nanospheres. Sens. Actuators B Chem. 257, 1009–1020 (2018)CrossRefGoogle Scholar
  24. 24.
    Karimi-Maleh, H., Bananezhad, A., Ganjali, M.R., Norouzi, P., Sadrnia, A.: Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci. 441, 55–60 (2018)CrossRefGoogle Scholar
  25. 25.
    Ali, T.A., Mohamed, G.G., Omar, M., Hanafy, N.M.: Construction and performance characteristics of chemically modified carbon paste electrodes for the selective determination of Co (II) ions in water samples. J. Ind. Eng. Chem. 47, 102–111 (2017)CrossRefGoogle Scholar
  26. 26.
    Kwon, H., Chan, K.M., Kool, E.T.: DNA as an environmental sensor: detection and identification of pesticide contaminants in water with fluorescent nucleobases. Org. Biomol. Chem. 15(8), 1801–1809 (2017)CrossRefGoogle Scholar
  27. 27.
    Hui, N., Sun, X., Niu, S., Luo, X.: PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl. Mater. Interfaces. 9(3), 2914–2923 (2017)CrossRefGoogle Scholar
  28. 28.
    Safari, F., Keyvanfard, M., Karimi-Maleh, H., Alizad, K.: Voltammetric determination of Penicillamine using a carbon paste electrode modified with multiwall carbon nanotubes in the presence of Methyldopa as a Mediator. Iran. J. Pharm. Res. IJPR 16(3), 1019 (2017)Google Scholar
  29. 29.
    Cheraghi, S., Taher, M.A., Karimi-Maleh, H.: Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal. 62, 254–259 (2017)CrossRefGoogle Scholar
  30. 30.
    Cheraghi, S., Taher, M.A., Karimi-Maleh, H.: A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci. 420, 882–885 (2017)CrossRefGoogle Scholar
  31. 31.
    Ebbesen, T., Lezec, H., Hiura, H., Bennett, J., Ghaemi, H., Thio, T.: Electrical conductivity of individual carbon nanotubes. Nature 382(6586), 54 (1996)CrossRefGoogle Scholar
  32. 32.
    Lekawa-Raus, A., Patmore, J., Kurzepa, L., Bulmer, J., Koziol, K.: Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Func. Mater. 24(24), 3661–3682 (2014)CrossRefGoogle Scholar
  33. 33.
    Dresselhaus, M.S., Dresselhaus, G., Eklund, P., Rao, A.: Carbon nanotubes, the Physics of Fullerene-Based and Fullerene-Related Materials, pp. 331–379. Springer, Berlin (2000)CrossRefGoogle Scholar
  34. 34.
    Ramanathan, T., Fisher, F., Ruoff, R., Brinson, L.: Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17(6), 1290–1295 (2005)CrossRefGoogle Scholar
  35. 35.
    Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005)CrossRefGoogle Scholar
  36. 36.
    Zhao, Q., Gan, Z., Zhuang, Q.: Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23), 1609–1613 (2002)CrossRefGoogle Scholar
  37. 37.
    Ramnani, P., Saucedo, N.M., Mulchandani, A.: Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143, 85–98 (2016)CrossRefGoogle Scholar
  38. 38.
    Liu, G., Wang, S., Liu, J., Song, D.: An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal. Chem. 84(9), 3921–3928 (2012)CrossRefGoogle Scholar
  39. 39.
    Karimi-Maleh, H., Biparva, P., Hatami, M.: A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron. 48, 270–275 (2013)CrossRefGoogle Scholar
  40. 40.
    Gupta, V.K., Karimi-Maleh, H., Sadegh, R.: Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 10, 303–316 (2015)Google Scholar
  41. 41.
    Karimi-Maleh, H., Moazampour, M., Ensafi, A.A., Mallakpour, S., Hatami, M.: An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. 21(9), 5879–5888 (2014)CrossRefGoogle Scholar
  42. 42.
    March, G., Nguyen, T.D., Piro, B.: Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5(2), 241–275 (2015)CrossRefGoogle Scholar
  43. 43.
    Musameh, M., Wang, J., Merkoci, A., Lin, Y.: Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4(10), 743–746 (2002)CrossRefGoogle Scholar
  44. 44.
    Tsai, Y.-C., Chen, J.-M., Li, S.-C., Marken, F.: Electroanalytical thin film electrodes based on a Nafion™–multi-walled carbon nanotube composite. Electrochem. Commun. 6(9), 917–922 (2004)CrossRefGoogle Scholar
  45. 45.
    Wu, K., Hu, S., Fei, J., Bai, W.: Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal. Chim. Acta 489(2), 215–221 (2003)CrossRefGoogle Scholar
  46. 46.
    Ensafi, A.A., Karimi-Maleh, H.: Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J. Electroanal. Chem. 640(1), 75–83 (2010)CrossRefGoogle Scholar
  47. 47.
    Gupta, V.K., Nayak, A., Agarwal, S., Singhal, B.: Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb. Chem. High Throughput Screen. 14(4), 284–302 (2011)CrossRefGoogle Scholar
  48. 48.
    Gupta, V.K., Prasad, R., Kumar, P., Mangla, R.: New nickel (II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly (vinyl chloride) matrix. Anal. Chim. Acta 420(1), 19–27 (2000)CrossRefGoogle Scholar
  49. 49.
    Gupta, V.K., Jain, A.K., Maheshwari, G.: Aluminum (III) selective potentiometric sensor based on morin in poly (vinyl chloride) matrix. Talanta 72(4), 1469–1473 (2007)CrossRefGoogle Scholar
  50. 50.
    Yuan, D., Anthis, A.H., Ghahraman Afshar, M., Pankratova, N., Cuartero, M., Crespo, G.A., Bakker, E.: All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples. Anal. Chem. 87(17), 8640–8645 (2015)CrossRefGoogle Scholar
  51. 51.
    Gupta, V.K., Jain, S., Khurana, U.: A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury (II). Electroanalysis 9(6), 478–480 (1997)CrossRefGoogle Scholar
  52. 52.
    Martel, R., Schmidt, T., Shea, H., Hertel, T., Avouris, P.: Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447–2449 (1998)CrossRefGoogle Scholar
  53. 53.
    Crespo, G.A., Macho, S., Rius, F.X.: Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal. Chem. 80(4), 1316–1322 (2008)CrossRefGoogle Scholar
  54. 54.
    Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., Vafaei, Z.: Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). J. Hazard. Mater. 183(1–3), 402–409 (2010)CrossRefGoogle Scholar
  55. 55.
    Mashhadizadeh, M.H., Ramezani, S., Rofouei, M.K.: Development of a novel MWCNTs–triazene-modified carbon paste electrode for potentiometric assessment of Hg (II) in the aquatic environments. Mater. Sci. Eng., C 47, 273–280 (2015)CrossRefGoogle Scholar
  56. 56.
    Parra, E.J., Crespo, G.A., Riu, J., Ruiz, A., Rius, F.X.: Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. Analyst 134(9), 1905–1910 (2009)CrossRefGoogle Scholar
  57. 57.
    Ganjali, M.R., Khoshsafar, H., Shirzadmehr, A., Javanbakht, M., Faridbod, F.: Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multi-walled carbon nanotubes (MWCNTs). Int. J. Electrochem. Sci. 4(3), 435–443 (2009)Google Scholar
  58. 58.
    Ganjali, M.R., Motakef-Kazami, N., Faridbod, F., Khoee, S., Norouzi, P.: Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J. Hazard. Mater. 173(1–3), 415–419 (2010)CrossRefGoogle Scholar
  59. 59.
    Najafi, M., Maleki, L., Rafati, A.A.: Novel surfactant selective electrochemical sensors based on single walled carbon nanotubes. J. Mol. Liq. 159(3), 226–229 (2011)CrossRefGoogle Scholar
  60. 60.
    Guo, J., Chai, Y., Yuan, R., Song, Z., Zou, Z.: Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sens. Actuators B Chem. 155(2), 639–645 (2011)CrossRefGoogle Scholar
  61. 61.
    Faridbod, F., Ganjali, M.R., Larijani, B., Norouzi, P.: Multi-walled carbon nanotubes (MWCNTs) and room temperature ionic liquids (RTILs) carbon paste Er (III) sensor based on a new derivative of dansyl chloride. Electrochim. Acta 55(1), 234–239 (2009)CrossRefGoogle Scholar
  62. 62.
    Sanati, A.L., Karimi-Maleh, H., Badiei, A., Biparva, P., Ensafi, A.A.: A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng., C 35, 379–385 (2014)CrossRefGoogle Scholar
  63. 63.
    Keyvanfard, M., Khosravi, V., Karimi-Maleh, H., Alizad, K., Rezaei, B.: Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator. J. Mol. Liq. 177, 182–189 (2013)CrossRefGoogle Scholar
  64. 64.
    Sanghavi, B.J., Varhue, W., Rohani, A., Liao, K.-T., Bazydlo, L.A., Chou, C.-F., Swami, N.S.: Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment in nanoslit channel with electrochemical detection on graphene. Lab Chip 15(24), 4563–4570 (2015)CrossRefGoogle Scholar
  65. 65.
    Ma, X., Chao, M.: Study on the electrochemical properties of Kojic acid at a poly (glutamic Acid)-modified glassy carbon electrode and its analytical application. Food Anal. Methods 7(7), 1458–1464 (2014)CrossRefGoogle Scholar
  66. 66.
    Chamjangali, M.A., Kouhestani, H., Masdarolomoor, F., Daneshinejad, H.: A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sens. Actuators B Chem. 216(Supplement C) 216, 384–393 (2015)Google Scholar
  67. 67.
    Nirmaier, H.-P., Fischer, E., Meyer, A., Henze, G.: Determination of polycyclic aromatic hydrocarbons in water samples using high-performance liquid chromatography with amperometric detection. J. Chromatogr. A 730(1–2), 169–175 (1996)CrossRefGoogle Scholar
  68. 68.
    Xing, J., Chen, D., Zhao, W., Peng, X., Bai, Z., Zhang, W., Zhao, X.: Preparation and characterization of a novel porous Ti/SnO2–Sb2O3–CNT/PbO2 electrode for the anodic oxidation of phenol wastewater. RSC Adv. 5(66), 53504–53513 (2015)CrossRefGoogle Scholar
  69. 69.
    Andrade, C.A., Nascimento, J.M., Oliveira, I.S., de Oliveira, C.V., de Melo, C.P., Franco, O.L., Oliveira, M.D.: Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection. Colloids Surf. B 135, 833–839 (2015)CrossRefGoogle Scholar
  70. 70.
    Golestanifar, F., Karimi-Maleh, H., Atar, N., Aydoğdu, E., Ertan, B., Taghavi, M., Yola, M.L., Ghaemy, M.: Voltammetric determination of hydroxylamine using a ferrocene derivative and NiO/CNTs nanocomposite modified carbon paste electrode. Int. J. Electrochem. Sci. 10(7), 5456–5464 (2015)Google Scholar
  71. 71.
    Huang, W., Hu, W., Song, J.: Adsorptive stripping voltammetric determination of 4-aminophenol at a single-wall carbon nanotubes film coated electrode. Talanta 61(3), 411–416 (2003)CrossRefGoogle Scholar
  72. 72.
    Janegitz, B.C., Marcolino-Junior, L.H., Campana-Filho, S.P., Faria, R.C., Fatibello-Filho, O.: Anodic stripping voltammetric determination of copper (II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens. Actuators B Chem. 142(1), 260–266 (2009)CrossRefGoogle Scholar
  73. 73.
    Luo, L.-Q., Zou, X.-L., Ding, Y.-P., Wu, Q.-S.: Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators B Chem. 135(1), 61–65 (2008)CrossRefGoogle Scholar
  74. 74.
    Afkhami, A., Bagheri, H., Khoshsafar, H., Saber-Tehrani, M., Tabatabaee, M., Shirzadmehr, A.: Simultaneous trace-levels determination of Hg (II) and Pb (II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Anal. Chim. Acta 746, 98–106 (2012)CrossRefGoogle Scholar
  75. 75.
    Ensafi, A.A., Karimi-Maleh, H.: Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci. 5(3), 392–406 (2010)Google Scholar
  76. 76.
    Afzali, D., Karimi-Maleh, H., Khalilzadeh, M.A.: Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode. Environ. Chem. Lett. 9(3), 375–381 (2011)CrossRefGoogle Scholar
  77. 77.
    Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H., Nasiri, V., Khalilzadeh, M.A., Biparva, P.: Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics 18(7), 687–694 (2012)CrossRefGoogle Scholar
  78. 78.
    Gupta, V.K., Karimi-Maleh, H., Sadegh, R.: Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 10, 303–316 (2015)Google Scholar
  79. 79.
    Ensafi, A.A., Karimi-Maleh, H., Keyvanfard, M.: A new voltammetric sensor for the determination of sulfite in water and wastewater using modified-multiwall carbon nanotubes paste electrode. Int. J. Environ. Anal. Chem. 93(6), 650–660 (2013)CrossRefGoogle Scholar
  80. 80.
    Deo, R.P., Wang, J., Block, I., Mulchandani, A., Joshi, K.A., Trojanowicz, M., Scholz, F., Chen, W., Lin, Y.: Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta 530(2), 185–189 (2005)CrossRefGoogle Scholar
  81. 81.
    Liu, G., Lin, Y.: Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal. Chem. 78(3), 835–843 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hassan Karimi-Maleh
    • 1
    Email author
  • Aliasghar Beheshti
    • 2
  • Fatemeh Karimi
    • 1
  • Mehdi Shabani-Nooshabadi
    • 3
  • Mohammad Reza Ganjali
    • 4
    • 5
  • Morteza Rezapour
    • 6
  1. 1.Department of Chemical Engineering, Laboratory of NanotechnologyQuchan University of Advanced TechnologyQuchanIslamic Republic of Iran
  2. 2.Department of Water Resources EngineeringFerdowsi University of MashhadMashhadIran
  3. 3.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  4. 4.Center of Excellence in Electrochemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran
  5. 5.Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  6. 6.IP DepartmentResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations