• Bey Fen LeoEmail author
  • Nurul Akmal Che Lah
  • Mahendran Samykano
  • Thiruchelvi Pulingam
  • Swee-Seong Tang
  • Sayonthoni Das Tuhi
Part of the Carbon Nanostructures book series (CARBON)


The availability of clean, safe and healthy water is diminishing every day, which is projected to upsurge in future. To address this, numerous water decontamination methods and technologies being developed and adapted, and several new possibilities are in the way through extensive research.



Acknowledgements for “Carbon Nanotubes for Water Disinfection”: Financial support from the University of Malaya BKP grant (BK095-2016) and UM Research Grant–Innovation Technology (RP045-17AET) are acknowledged.

References and Future Readings

  1. 1.
    Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRefGoogle Scholar
  2. 2.
    Yang, C.N., Mamouni, J., Tang, Y.A., Yang, L.J.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)CrossRefGoogle Scholar
  3. 3.
    Iijima, S.: Growth of carbon nanotubes. Mater. Sci. Eng., B 19, 172–180 (1993)CrossRefGoogle Scholar
  4. 4.
    Bethune, D., Klang, C., De Vries, M., Gorman, G., Savoy, R., Vazquez, J., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRefGoogle Scholar
  5. 5.
    Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005)CrossRefGoogle Scholar
  6. 6.
    Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27, 227–242 (2010)CrossRefGoogle Scholar
  7. 7.
    Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G., Lee, H.-Y., et al.: A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuators B Chem. 122, 672–682 (2007)CrossRefGoogle Scholar
  8. 8.
    Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D., Elimelech, M.: Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45, 3672–3679 (2011)CrossRefGoogle Scholar
  9. 9.
    Upadhyayula, V.K., Deng, S., Mitchell, M.C., Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408, 1–13 (2009)CrossRefGoogle Scholar
  10. 10.
    Ounaies, Z., Park, C., Wise, K., Siochi, E., Harrison, J.: Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637–1646 (2003)CrossRefGoogle Scholar
  11. 11.
    Upadhyayula, V.K., Deng, S., Smith, G.B., Mitchell, M.C.: Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. Water Res. 43, 148–156 (2009)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Ru, J., Qu, J., Dai, R., Wang, Z., Hu, C.: Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresour. Technol. 100, 2995–3002 (2009)CrossRefGoogle Scholar
  13. 13.
    Karthikairaj, K., Isaiarasu, L., Sakthivel, N.: Efficacy of some herbal extracts on microbes causing flacherie disease in mulberry silkworm, Bombyx mori L. J. Biopesticides 7, 89 (2014)Google Scholar
  14. 14.
    Deokar, A.R., Lin, L.-Y., Chang, C.-C., Ling, Y.-C.: Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J. Mater. Chem. B 1, 2639–2646 (2013)CrossRefGoogle Scholar
  15. 15.
    Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012)CrossRefGoogle Scholar
  16. 16.
    Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., Hao, H.: An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 10 (2016)Google Scholar
  17. 17.
    Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)CrossRefGoogle Scholar
  18. 18.
    Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005)Google Scholar
  19. 19.
    Parks, A.N., Chandler, G.T., Ho, K.T., Burgess, R.M., Ferguson, P.L.: Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environ. Toxicol. Chem. 34, 247–251 (2015)CrossRefGoogle Scholar
  20. 20.
    Hu, L., Gao, S., Ding, X., Wang, D., Jiang, J., Jin, J., et al.: Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015)CrossRefGoogle Scholar
  21. 21.
    Tsai, P.-A., Kuo, H.-Y., Chiu, W.-M., Wu, J.-H.: Purification and functionalization of single-walled carbon nanotubes through different treatment procedures. J. Nanomater. 2013, 9 (2013)Google Scholar
  22. 22.
    Cho, H.-H., Wepasnick, K., Smith, B.A., Bangash, F.K., Fairbrother, D.H., Ball, W.P.: Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26, 967–981 (2010)CrossRefGoogle Scholar
  23. 23.
    Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., et al.: A carbon nanotube wall membrane for water treatment. Nat. Commun. 6, 7109 (2015)CrossRefGoogle Scholar
  24. 24.
    Ma, C.-Y., Huang, S.-C., Chou, P.-H., Den, W., Hou, C.-H.: Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere 146, 113–120 (2016)CrossRefGoogle Scholar
  25. 25.
    Mohammed, M.I., Abdul Razak, A.A., Hussein Al-Timimi, D.A.: Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater. Adv. Mater. Sci. Eng. 2014, 10 (2014)CrossRefGoogle Scholar
  26. 26.
    Goh, P.S., Ismail, A.F.: Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356, 115–128 (2015)CrossRefGoogle Scholar
  27. 27.
    Mahmoud, K.A., Mansoor, B., Mansour, A., Khraisheh, M.: Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015)CrossRefGoogle Scholar
  28. 28.
    Tijing, L.D., Woo, Y.C., Choi, J.-S., Lee, S., Kim, S.-H., Shon, H.K.: Fouling and its control in membrane distillation—a review. J. Membr. Sci. 475, 215–244 (2015)CrossRefGoogle Scholar
  29. 29.
    Kyoungjin An, A., Lee, E.-J., Guo, J., Jeong, S., Lee, J.-G., Ghaffour, N.: Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci. Rep. 7, 41562 (2017)CrossRefGoogle Scholar
  30. 30.
    Sun, L., He, X., Lu, J.: Super square carbon nanotube network: a new promising water desalination membrane. Npj Comput Mater. 2, 16004 (2016)CrossRefGoogle Scholar
  31. 31.
    Song, Z., Xu, Z.: Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. Sci. Rep. 5, 10597 (2015)CrossRefGoogle Scholar
  32. 32.
    Viraka Nellore, B.P., Kanchanapally, R., Pedraza, F., Sinha, S.S., Pramanik, A., Hamme, A.T., et al.: Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces. 7, 19210–19218 (2015)CrossRefGoogle Scholar
  33. 33.
    Gunawan, P., Guan, C., Song, X., Zhang, Q., Leong, S.S.J., Tang, C., et al.: Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5, 10033–10040 (2011)CrossRefGoogle Scholar
  34. 34.
    Wei, G., Yu, H., Quan, X., Chen, S., Zhao, H., Fan, X.: Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment. Environ. Sci. Technol. 48, 8062–8068 (2014)CrossRefGoogle Scholar
  35. 35.
    Fan, X., Zhao, H., Quan, X., Liu, Y., Chen, S.: Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation. Water Res. 88, 285–292 (2016)CrossRefGoogle Scholar
  36. 36.
    Maas, M.: Carbon nanomaterials as antibacterial colloids. Materials 9, 617 (2016)CrossRefGoogle Scholar
  37. 37.
    Kang, S., Mauter, M.S., Elimelech, M.: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42, 7528–7534 (2008)CrossRefGoogle Scholar
  38. 38.
    Deng, S., Upadhyayula, V.K., Smith, G.B., Mitchell, M.C.: Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. IEEE Sens. J. 8, 954–962 (2008)CrossRefGoogle Scholar
  39. 39.
    Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., et al.: Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9, 2735–2746 (2013)CrossRefGoogle Scholar
  40. 40.
    Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M.: Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24, 6409–6413 (2008)CrossRefGoogle Scholar
  41. 41.
    Rajavel, K., Gomathi, R., Manian, S., Rajendra Kumar, R.T.: In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30, 592–601 (2014)CrossRefGoogle Scholar
  42. 42.
    Brinkman, C.L., Schmidt-Malan, S.M., Karau, M.J., Greenwood-Quaintance, K., Hassett, D.J., Mandrekar, J.N., et al.: Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS ONE 11, e0168595 (2016)CrossRefGoogle Scholar
  43. 43.
    Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K.: Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 5, 19–23 (2015)Google Scholar
  44. 44.
    Monticelli, L., Salonen, E., Ke, P.C., Vattulainen, I.: Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5, 4433–4445 (2009)CrossRefGoogle Scholar
  45. 45.
    Chen, K.L., Bothun, G.D.: Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol. 48, 873–880 (2014)CrossRefGoogle Scholar
  46. 46.
    Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., et al.: Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 43, 8423–8429 (2009)CrossRefGoogle Scholar
  47. 47.
    Hossain, F., Perales-Perez, O.J., Hwang, S., Román, F.: Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466, 1047–1059 (2014)CrossRefGoogle Scholar
  48. 48.
    Brady-Estévez, A.S., Kang, S., Elimelech, M.: A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4, 481–484 (2008)CrossRefGoogle Scholar
  49. 49.
    Yang, C., Mamouni, J., Tang, Y., Yang, L.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)CrossRefGoogle Scholar
  50. 50.
    Wang, R., Mikoryak, C., Li, S., Bushdiecker 2nd, D., Musselman, I.H., Pantano, P., et al.: Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol. Pharm. 8, 1351–1361 (2011)CrossRefGoogle Scholar
  51. 51.
    Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., et al.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121–131 (2007)CrossRefGoogle Scholar
  52. 52.
    Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., et al.: Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3, 3891–3902 (2009)CrossRefGoogle Scholar
  53. 53.
    Huang, T., Tzeng, Y., Liu, Y., Chen, Y., Walker, K., Guntupalli, R., et al.: Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 13, 1098–1102 (2004)CrossRefGoogle Scholar
  54. 54.
    Arias, L.R., Yang, L.: Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25, 3003–3012 (2009)CrossRefGoogle Scholar
  55. 55.
    Akasaka, T., Watari, F.: Capture of bacteria by flexible carbon nanotubes. Acta Biomater. 5, 607–612 (2009)CrossRefGoogle Scholar
  56. 56.
    De Volder, M.F., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  57. 57.
    Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 25, 1263–1280 (2013)CrossRefGoogle Scholar
  58. 58.
    Seo, Y., Hwang, J., Kim, J., Jeong, Y., Hwang, M.P., Choi, J., et al.: Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomed. 9, 4621–4629 (2014)Google Scholar
  59. 59.
    Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)CrossRefGoogle Scholar
  60. 60.
    Kar, S., Bindal, R., Tewari, P.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7, 385–389 (2012)CrossRefGoogle Scholar
  61. 61.
    Daer, S., Kharraz, J., Giwa, A., Hasan, S.W.: Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015)CrossRefGoogle Scholar
  62. 62.
    Rodrigues, D.F., Jaisi, D.P., Elimelech, M.: Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ. Sci. Technol. 47, 625–633 (2013)CrossRefGoogle Scholar
  63. 63.
    Smith, S.C., Rodrigues, D.F.: Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91, 122–143 (2015)CrossRefGoogle Scholar
  64. 64.
    Zhao, X., Liu, R.: Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40, 244–255 (2012)CrossRefGoogle Scholar
  65. 65.
    Coccini, T., Roda, E., Sarigiannis, D.A., Mustarelli, P., Quartarone, E., Profumo, A., et al.: Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269, 41–53 (2010)CrossRefGoogle Scholar
  66. 66.
    Clar, J.G., Gustitus, S.A., Youn, S., Silvera Batista, C.A., Ziegler, K.J., Bonzongo, J.C.: Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels. Environ. Sci. Technol. 49, 3913–3921 (2015)CrossRefGoogle Scholar
  67. 67.
    Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)CrossRefGoogle Scholar
  68. 68.
    Thines, R., Mubarak, N., Nizamuddin, S., Sahu, J., Abdullah, E., Ganesan, P.: Application potential of carbon nanomaterials in water and wastewater treatment: a review. J. Taiwan Inst. Chem. Eng. (2017)Google Scholar
  69. 69.
    Kar, S., Subramanian, M., Pal, A., Ghosh, A., Bindal, R., Prabhakar, S., et al.: Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes. In: AIP Conference Proceedings: AIP, pp. 181–185 (2013)Google Scholar
  70. 70.
    Corry, B.: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011)CrossRefGoogle Scholar
  71. 71.
    Kong, H., Gao, C., Yan, D.: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412–413 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bey Fen Leo
    • 1
    • 2
    Email author
  • Nurul Akmal Che Lah
    • 3
  • Mahendran Samykano
    • 3
  • Thiruchelvi Pulingam
    • 2
  • Swee-Seong Tang
    • 4
  • Sayonthoni Das Tuhi
    • 5
  1. 1.Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Nanotechnology and Catalysis Research Centre (NANOCAT), Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Faculty of Manufacturing EngineeringUniversiti Malaysia PahangPekanMalaysia
  4. 4.Division of Microbiology, Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  5. 5.Department of MicrobiologyChittagong UniversityChittagongBangladesh

Personalised recommendations