Membrane Technology

  • Priya Banerjee
  • Rasel Das
  • Papita DasEmail author
  • Aniruddha Mukhopadhyay
Part of the Carbon Nanostructures book series (CARBON)


Almost one-third of the global population is presently threatened by water scarcity owing to unplanned civilization and industrialization. For addressing these challenges, membrane technology has been widely investigated for reclamation and reuse of different streams of wastewater. Other than removal of macro-, micro- and nanopollutants from effluents, significant focus has been placed upon desalination efficiency of membranes as well. In comparison to conventional membranes, carbon nanotube (CNT)-based membranes have been found to exhibit superior antifouling and self-cleaning properties with very low energy consumption. This chapter describes different types of CNT-based membranes reported in contemporary research for water purification. It also highlights the drawbacks and future challenges of using CNT membranes for wastewater treatment. The different aspects of CNT membrane-based water purification compiled in this chapter will help the potential readers including academicians, membrane technologists, environmentalists, and industrialists aiming to alleviate water scarcity issues.



Authors acknowledge all members of Department of Environmental Science, University of Calcutta, Kolkata, and Department of Chemical Engineering, Jadavpur University, Kolkata, for their constant support and suggestions.

References and Future Readings

  1. 1.
    Anitha, K., Namsani, S., Singh, J.K.: Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J. Phys. Chem. A 119(30), 8349–8358 (2015)CrossRefGoogle Scholar
  2. 2.
    Ahn, C.H., Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S.H., Bae, S.S., Park, J., Yoon, J.: Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem. 18, 1551–1559 (2012)CrossRefGoogle Scholar
  3. 3.
    Amini, M., Jahanshahi, M., Rahimpour, A.: Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci. 435, 233–241 (2013)CrossRefGoogle Scholar
  4. 4.
    Bakajin, O., Noy, A., Fornasiero, F., Grigoropoulus, C.P., Holt, J.K., In, J.B., Kim, S., Park, H.G.: Nanofluidic carbon nanotube membranes: applications for water purification and desalination. In: Street, A., Sustich, R., Duncan, J., Savage, N. (eds.) Nanotechnol. Appl. Clean Water, pp. 77–93. Elsevier Inc., New York (2009)Google Scholar
  5. 5.
    Coping with water scarcity. A strategic issue and priority for system-wide action (UN-water, 2006)Google Scholar
  6. 6.
    Corry, B.: Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B112(5), 1427–1434 (2008)CrossRefGoogle Scholar
  7. 7.
    Chi, W., Shi, H., Shi, W., Guo, Y., Guo, T.: 4-Nitrophenol surface molecularly imprinted polymers based on multiwalled carbon nanotubes for the elimination of paraoxon pollution. J. Hazard. Mater. 227, 243–249 (2012)CrossRefGoogle Scholar
  8. 8.
    Choi, J.H., Jegal, J., Kim, W.N.: Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci. 284(1), 406–415 (2006)CrossRefGoogle Scholar
  9. 9.
    Chan, W.F., Chen, H., Surapathi, A., Taylor, M.G., Shao, X., Marand, E., Johnson, J.K.: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7(6), 5308–5319 (2013)CrossRefGoogle Scholar
  10. 10.
    Choi, H., Son, M., Choi, H.: Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer. Chemosphere 185, 1181–1188 (2017)CrossRefGoogle Scholar
  11. 11.
    Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)CrossRefGoogle Scholar
  12. 12.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  13. 13.
    Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. RSC Chem. Soc. Rev. 46, 6946–7020 (2017)CrossRefGoogle Scholar
  14. 14.
    Du, F., Qu, L., Xia, Z., Feng, L., Dai, L.: Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13), 8437–8443 (2011)CrossRefGoogle Scholar
  15. 15.
    Dumée, L., Lee, J., Sears, K., Tardy, B., Duke, M., Gray, S.: Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. J. Membr. Sci. 427, 422–430 (2013)CrossRefGoogle Scholar
  16. 16.
    El Badawi, N., Ramadan, A.R., Esawi, A.M.K., El-Morsi, M.: Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344, 79–85 (2014)CrossRefGoogle Scholar
  17. 17.
    Ghaemia, N., Madaeni, S.S., Daraei, P., Rajabi, H., Tahereh, S., Rahimpour, F., Shirvani, B.: PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: fabrication and performance optimization in dye removal by RSM. J. Hazard. Mater. 298, 111–121 (2015)CrossRefGoogle Scholar
  18. 18.
    Gao, W., Sun, X., Chen, T., Lin, Y., Chen, Y., Lu, F., Chen, Z.: Preparation of cyano-functionalized multiwalled carbon nanotubes as solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water. J. Sep. Sci. 35, 1967–1976 (2012)CrossRefGoogle Scholar
  19. 19.
    Goh, P.S., Ismail, A.F., Ng, B.C.: Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013)CrossRefGoogle Scholar
  20. 20.
    Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G.: Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)CrossRefGoogle Scholar
  21. 21.
    Hoover, L.A., Schiffman, J.D., Elimelech, M.: Nanofibers in thin-film composite membrane support layers: enabling expanded application of forward and pressure retarded osmosis. Desalination 308, 73–81 (2013)CrossRefGoogle Scholar
  22. 22.
    Ho, K.C., Teow, Y.H., Ang, W.L., Mohammad, A.W.: Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment. Sep. Purif. Technol. 177, 337–349 (2017)CrossRefGoogle Scholar
  23. 23.
    Ihsanullah, Patel, F., Khraisheh, M., Atieh, M.A., Laoui, T.: Novel aluminum oxide-impregnated carbon nanotube membrane for the removal of cadmium from aqueous solution. Materials. 10, 1144 (2017)Google Scholar
  24. 24.
    Jame, S.A., Zhou, Z.: Electrochemical carbon nanotube filters for water and wastewater treatment. Nanotechnol. Rev. 5(1), 41–50 (2016)CrossRefGoogle Scholar
  25. 25.
    Jafari, A., Mahvi, A.H., Nasseri, S., Rashidi, A., Nabizadeh, R., Rezaee, R.: Ultrafiltration of natural organic matter from water by vertically aligned carbon nanotube membrane. J. Environ. Heal. Sci. Eng. 13, 51 (2015)CrossRefGoogle Scholar
  26. 26.
    Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)CrossRefGoogle Scholar
  27. 27.
    Kar, S., Bindal, R.C., Tewar, P.K.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7, 385–389 (2012)CrossRefGoogle Scholar
  28. 28.
    Kim, E.S., Hwang, G., El-Din, M.G., Liu, Y.: Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 394–395, 37–48 (2012)CrossRefGoogle Scholar
  29. 29.
    Lee, K.P., Arnot, T.C., Mattia, D.: A review of reverse osmosis membrane materials for desalination—development to date and future potential. J. Membr. Sci. 370, 1–22 (2011)CrossRefGoogle Scholar
  30. 30.
    Lau, W.J., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J.P., Ismail, A.F.: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80(1), 306–324 (2015)CrossRefGoogle Scholar
  31. 31.
    Liu, Y.B., Liu, H., Zhou, Z., Wang, T.R., Ong, C.N., Vecitis, C.D.: Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter. Environ. Sci. Technol. 49, 7974–7980 (2015)CrossRefGoogle Scholar
  32. 32.
    Lee, C., Baik, S.: Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 48, 2192–2197 (2010)CrossRefGoogle Scholar
  33. 33.
    Lee, K.J., Park, H.D.: The most densified vertically-aligned carbon nanotube membranes and their normalized water permeability and high pressure durability. J. Membr. Sci. 501, 144–151 (2016)CrossRefGoogle Scholar
  34. 34.
    Liu, H., Vecitis, C.D.: Reactive transport mechanism for organic oxidation during electrochemical filtration: mass-transfer, physical adsorption, and electron-transfer. J. Phys. Chem. C 116, 374–383 (2012)CrossRefGoogle Scholar
  35. 35.
    Liu, H., Vajpayee, A., Vecitis, C.D.: Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. ACS Appl. Mater. Interfaces. 5, 10054–10066 (2013)CrossRefGoogle Scholar
  36. 36.
    Liu, H., Liu, J., Liu, Y.B., Bertoldi, K., Vecitis, C.D.: Quantitative 2D electrooxidative carbon nanotube filter model: insight into reactive sites. Carbon 80, 651–664 (2014)CrossRefGoogle Scholar
  37. 37.
    Liu, H., Zuo, K.C., Vecitis, C.D.: Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ. Sci. Technol. 48, 13871–13879 (2014)CrossRefGoogle Scholar
  38. 38.
    Liu, Y., Xie, J., Ong, C.N., Vecitis, C.D., Zhou, Z.: Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ. Sci. Water Res. Technol. 1, 769–778 (2015)CrossRefGoogle Scholar
  39. 39.
    Majeed, S., Fierro, D., Buhr, K., Wind, J., Du, B., Boschetti-de-Fierro, A., Abetz, V.: Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J. Membr. Sci. 403–404, 101–109 (2012)CrossRefGoogle Scholar
  40. 40.
    Mahdavi, M.R., Delnavaz, M., Vatanpour, V., Farahbakhsh, J.: Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes. Sep. Purif. Technol. 184, 119–127 (2017)CrossRefGoogle Scholar
  41. 41.
    Mishra, A.K., Ramaprabhu, S.: Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J. Phys. Chem. C 114, 2583–2590 (2010)CrossRefGoogle Scholar
  42. 42.
    Nasir, R., Mukhtar, H., Man, Z., Mohshim, D.F.: Material advancements in fabrication of mixed-matrix membranes. Chem. Eng. Technol. 36(5), 717–727 (2013)CrossRefGoogle Scholar
  43. 43.
    Park, J., Choi, W., Kim, S.H., Chun, B.H., Bang, J., Lee, K.B.: Enhancement of chlorine resistance in carbon nanotube-based nanocomposite reverse osmosis membrane. Desalin. Water Treat. 15, 198–204 (2010)CrossRefGoogle Scholar
  44. 44.
    Pan, B., Xing, B.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013 (2008)CrossRefGoogle Scholar
  45. 45.
    Panizza, M., Cerisola, G.: Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009)CrossRefGoogle Scholar
  46. 46.
    Szpyrkowicz, L., Kaul, S., Neti, R.: Tannery wastewater treatment by electro-oxidation coupled with a biological process. J. Appl. Electrochem. 35, 381–390 (2005)CrossRefGoogle Scholar
  47. 47.
    Schnoor, M.H., Vecitis, C.D.: Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: effects of flow rate, ionic strength, and cathode material. J. Phys. Chem. C 117, 2855–2867 (2013)CrossRefGoogle Scholar
  48. 48.
    Saranya, R., Arthanareeswaran, G., Dionysiou, D.D.: Treatment of paper mill effluent using polyethersulfone/functionalised multiwalled carbon nanotubes based nanocomposite membranes. Chem. Eng. J. 236, 369–377 (2014)CrossRefGoogle Scholar
  49. 49.
    Su, F., Lu, C., Tai, J.H.: Separation of benzene, toluene, ethylbenzene and P-xylene from aqueous solutions by carbon nanotubes/polyvinylidene fluoride nanocomposite membrane. J. Water Resour. Protect. 8, 913–928 (2016)CrossRefGoogle Scholar
  50. 50.
    Son, M., Choi, H., Liu, L., Celik, E., Park, H., Choi, H.: Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem. Eng. J. 266, 376–384 (2015)CrossRefGoogle Scholar
  51. 51.
    Song, X., Wang, L., Tang, C.Y., Wang, Z., Gao, C.: Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination 369, 1–9 (2015)CrossRefGoogle Scholar
  52. 52.
    Van Hooijdonk, E., Bittencourt, C., Snyders, R., Colomer, J.F.: Functionalization of vertically aligned carbon nanotubes. Beilstein J. Nanotechnol. 4(1), 129–152 (2013)CrossRefGoogle Scholar
  53. 53.
    Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., Astinchap, B.: Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 375, 284–294 (2011)CrossRefGoogle Scholar
  54. 54.
    Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., Astinchap, B.: Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 90, 69–82 (2012)CrossRefGoogle Scholar
  55. 55.
    Vecitis, C.D., Gao, G., Liu, H.: Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. J. Phys. Chem. C 115, 3621–3629 (2011)CrossRefGoogle Scholar
  56. 56.
    Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D., Elimelech, M.: Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45, 3672–3679 (2011)CrossRefGoogle Scholar
  57. 57.
    Wu, M.B., Lv, Y., Yang, H.C., Liu, L.F., Zhang, X., Xu, Z.K.: Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J. Membr. Sci. 515, 238–244 (2016)CrossRefGoogle Scholar
  58. 58.
    Wu, H., Sun, H., Hong, W., Mao, L., Liu, Y.: Improvement of polyamide thin film nanocomposite membrane assisted by tannic acid–FeIII functionalized multiwall carbon nanotubes. ACS Appl. Mater. Interfaces. 9(37), 32255–32263 (2017)CrossRefGoogle Scholar
  59. 59.
    Xu, R., Wang, J., Kanezashi, M., Yoshioka, T., Tsuru, T.: Development of robust organosilica membranes for reverse osmosis. Langmuir 27, 13996–13999 (2011)CrossRefGoogle Scholar
  60. 60.
    Yang, S., Hu, J., Chen, C., Shao, D., Wang, X.: Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ. Sci. Technol. 45, 3621–3627 (2011)CrossRefGoogle Scholar
  61. 61.
    Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K., Karnik, R.: Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 4, 2220 (2013)CrossRefGoogle Scholar
  62. 62.
    Yu, M., Funke, H.H., Falconer, J.L., Noble, R.D.: High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9(1), 225–229 (2009)CrossRefGoogle Scholar
  63. 63.
    Yin, J., Zhu, G., Deng, B.: Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J. Membr. Sci. 437, 237–248 (2013)CrossRefGoogle Scholar
  64. 64.
    Yu, F., Wu, Y., Li, X., Ma, J.: Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J. Agric. Food Chem. 60, 12245–12253 (2012)CrossRefGoogle Scholar
  65. 65.
    Zimmerman, C.M., Singh, A., Koros, W.J.: Tailoring mixed matrix composite membranes for gas separations. J. Membr. Sci. 137(1), 145–154 (1997)CrossRefGoogle Scholar
  66. 66.
    Zhao, H., Qiu, S., Wu, L., Zhang, L., Chen, H., Gao, C.: Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci. 450, 249–256 (2014)CrossRefGoogle Scholar
  67. 67.
    Zinadini, S., Rostami, S., Vatanpour, V., Jalilian, E.: Preparation of antibifouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membr. Sci. 529, 133–141 (2017)CrossRefGoogle Scholar
  68. 68.
    Zheng, J., Li, M., Yu, K., Hu, J., Zhang, X., Wang, L.: Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J. Membr. Sci. 524, 344–353 (2017)CrossRefGoogle Scholar
  69. 69.
    Zhang, Q., Vecitis, C.D.: Conductive CNT-PVDF membrane for capacitive organic fouling reduction. J. Membr. Sci. 459, 143–156 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Priya Banerjee
    • 1
  • Rasel Das
    • 2
  • Papita Das
    • 3
    Email author
  • Aniruddha Mukhopadhyay
    • 1
  1. 1.Department of Environmental ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Chemical DepartmentFunctional Nano & Micro-Structured Surface, Leibniz-Institute of Surface ModificationLeipzigGermany
  3. 3.Department of Chemical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations