• Rasel DasEmail author
  • Sayonthoni Das Tuhi
  • Syed Mohammed Javaid Zaidi
Part of the Carbon Nanostructures book series (CARBON)


Removing of wastewater pollutants by novel adsorption techniques is urgent as they are continuously defiling the limited freshwater resources, seriously affecting the terrestrial, ecosystems, aquatic, and aerial flora and fauna. Emerging carbon nanotube (CNT)-based adsorbent materials are effective for efficient handling of wastewater pollutants. This chapter describes the mechanisms of CNT, and its forces to host the wastewater pollutants. Such details would help to considerably improve the performance of classical adsorbent technologies. Additionally, the functionalization of CNT and adsorption isotherms are considered as they have been significantly used for achieving maximum adsorption capacity and disclosing the adsorption phenomena of CNT, respectively. Some multifunctional CNT-based adsorbent are also discussed with reusability phenomena which need to be addressed before large-scale implementation of CNTs for water purification. Some suggestions and research clues are given to inform investigators of potentially disruptive CNT technologies and/or optimize the CNT sorption performances that have to be investigated in more detail.

References and Future Readings

  1. 1.
    Das, R.: Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration. Springer (2017)Google Scholar
  2. 2.
    Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring, Chem. Soc. Rev. (2017)Google Scholar
  3. 3.
    Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  4. 4.
    Freundlich, H.: Uber die Adsorption in Losungen Z. Phys. Chem. 57, 385–470 (1906)Google Scholar
  5. 5.
    Halsey, G.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)CrossRefGoogle Scholar
  6. 6.
    Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  7. 7.
    Henderson, A.P., Seetohul, L.N., Dean, A.K., Russell, P., Pruneanu, S., Ali, Z.: A novel Isotherm modeling self-assembled monolayer adsorption and structural changes. Langmuir 25, 931–938 (2009)CrossRefGoogle Scholar
  8. 8.
    Giles, C., MacEwan, T., Nakhwa, S., Smith, D.: Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (Resumed) 3973–3993 (1960)Google Scholar
  9. 9.
    SY Elovich, O.G.L.: Theory of adsorption from solutions of non electrolytes on solid: (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions, zv. Akad. Nauk. SSSR, Otd. Khim. Nauk 2, 209 (1962)Google Scholar
  10. 10.
    Lagergren, S.: About the Theory of So- Called Adsorption of Soluble Substances. Kunglia Svenska Vetenskapsakademiens 24, 1–39 (1898)Google Scholar
  11. 11.
    Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012)CrossRefGoogle Scholar
  12. 12.
    Ntim, S.A., Mitra, S.: Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J. Colloid Interf. Sci. 375, 154–159 (2012)CrossRefGoogle Scholar
  13. 13.
    Qiu, H., Lv, L., Pan, B.-C., Zhang, Q.-J., Zhang, W.-M., Zhang, Q.-X.: Critical review in adsorption kinetic models. J. Zhejiang Uni. Sci. A 10, 716–724 (2009)CrossRefGoogle Scholar
  14. 14.
    Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process. Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  15. 15.
    Wang, F., Sun, W., Pan, W., Xu, N.: Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe 2 O 4 composites. Chem. Eng. J. 274, 17–29 (2015)CrossRefGoogle Scholar
  16. 16.
    Wilczak, A., Keinath, T.M.: Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon. Water Environ. Res. 65, 238–244 (1993)CrossRefGoogle Scholar
  17. 17.
    Zhang, S., Shao, T., Kose, H.S., Karanfil, T.: Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons. Environ. Toxicol. Chem. 31, 79–85 (2012)CrossRefGoogle Scholar
  18. 18.
    Chowdhury, Z.Z., Hamid, S.B.A., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., Uddin, M.N.: Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 8, 6523–6555 (2013)CrossRefGoogle Scholar
  19. 19.
    Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)CrossRefGoogle Scholar
  20. 20.
    Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRefGoogle Scholar
  21. 21.
    Ren, X., Chen, C., Nagatsu, M., Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170, 395–410 (2011)CrossRefGoogle Scholar
  22. 22.
    Zhang, S., Shao, T., Kose, H.S., Karanfil, T.: Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ. Sci. Technol. 44, 6377–6383 (2010)CrossRefGoogle Scholar
  23. 23.
    Bhusan, B.: Springer handbook of nanotechnology, in. Springer Science, New York (2003)Google Scholar
  24. 24.
    Sun, F., Gao, J., Zhu, Y., Chen, G., Wu, S., Qin, Y.: Adsorption of SO2 by typical carbonaceous material: a comparative study of carbon nanotubes and activated carbons. Adsorption 19, 959–966 (2013)CrossRefGoogle Scholar
  25. 25.
    Yang, Q.-H., Hou, P.-X., Bai, S., Wang, M.-Z., Cheng, H.-M.: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett. 345, 18–24 (2001)CrossRefGoogle Scholar
  26. 26.
    Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., Kaneko, K.: Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett. 7, 583–587 (2007)CrossRefGoogle Scholar
  27. 27.
    Pan, B., Lin, D., Mashayekhi, H., Xing, B.: Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environ. Sci. Technol. 42, 5480–5485 (2008)CrossRefGoogle Scholar
  28. 28.
    Das, R., Hamid, S.B.A., Ali, M., Annuar, M., Samsudin, E.M.B., Bagheri, S.: Covalent functionalization schemes for tailoring solubility of multi-walled carbon nanotubes in water and acetone solvents. Sci. Adv. Mater. 7, 2726–2737 (2015)CrossRefGoogle Scholar
  29. 29.
    Ali, M., Das, R., Maamor, A., Hamid, S.B.A.: Multifunctional carbon nanotubes (CNTs): a new dimension in environmental remediation. Adv. Mater. Res. 832, 328–332 (2014)CrossRefGoogle Scholar
  30. 30.
    Das, R.: Nanobiohybrid Preparation, in: Nanohybrid Catalyst based on Carbon Nanotube, pp. 105–128. Springer (2017)Google Scholar
  31. 31.
    Das, R., Hamid, S.B.A., Annuar, M.S.M.: Highly efficient and stable novel nanobiohybrid catalyst to avert 3, 4-dihydroxybenzoic acid pollutant in water. Sci. Rep. 6, 33572 (2016)CrossRefGoogle Scholar
  32. 32.
    Sitko, R., Zawisza, B., Malicka, E.: Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions, TrAC. Trends Anal. Chem. 37, 22–31 (2012)CrossRefGoogle Scholar
  33. 33.
    Yang, S., Hu, J., Chen, C., Shao, D., Wang, X.: Mutual effects of Pb (II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ. Sci. Technol. 45, 3621–3627 (2011)CrossRefGoogle Scholar
  34. 34.
    Chi, W., Shi, H., Shi, W., Guo, Y., Guo, T.: 4-Nitrophenol surface molecularly imprinted polymers based on multiwalled carbon nanotubes for the elimination of paraoxon pollution. J. Hazard. Mater. 227, 243–249 (2012)CrossRefGoogle Scholar
  35. 35.
    Gao, W., Sun, X., Chen, T., Lin, Y., Chen, Y., Lu, F., Chen, Z.: Preparation of cyano-functionalized multiwalled carbon nanotubes as solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water. J. Sep. Sci. 35, 1967–1976 (2012)CrossRefGoogle Scholar
  36. 36.
    Anitha, K., Namsani, S., Singh J.K.: Removal of heavy metal ions using functionalized single-walled carbon nanotube: a molecular dynamics study. J. Phys. Chem. A (2015)Google Scholar
  37. 37.
    Corazza, M.Z., Somera, B.F., Segatelli, M.G., Tarley, C.R.T.: Grafting 3-mercaptopropyl trimethoxysilane on multi-walled carbon nanotubes surface for improving on-line cadmium (II) preconcentration from water samples. J. Hazard. Mater. 243, 326–333 (2012)CrossRefGoogle Scholar
  38. 38.
    Bandaru, N.M., Reta, N., Dalal, H., Ellis, A.V., Shapter, J., Voelcker, N.H.: Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J. Hazard. Mater. 261, 534–541 (2013)CrossRefGoogle Scholar
  39. 39.
    Hu, Z.-J., Cui, Y., Liu, S., Yuan, Y., Gao, H.-W.: Optimization of ethylenediamine-grafted multiwalled carbon nanotubes for solid-phase extraction of lead cations. Environ. Sci. Pollut. Res. 19, 1237–1244 (2012)CrossRefGoogle Scholar
  40. 40.
    Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., Yuan, Z., Chen, J.: Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces. 4, 5749–5760 (2012)CrossRefGoogle Scholar
  41. 41.
    Yu, F., Wu, Y., Li, X., Ma, J.: Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J. Agric. Food Chem. 60, 12245–12253 (2012)CrossRefGoogle Scholar
  42. 42.
    Kemp, K.C., Seema, H., Saleh, M., Le, N.H., Mahesh, K., Chandra, V., Kim, K.S.: Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5, 3149–3171 (2013)CrossRefGoogle Scholar
  43. 43.
    Ogoyi, D., Nguu, E., Mwita, C., Shiundu, P.: Determination of heavy metal content in water, sediment and microalgae from Lake Victoria. East Africa Open Environ. Eng. J. 4, 156–161 (2011)CrossRefGoogle Scholar
  44. 44.
    Sarkar, C., Bora, C., Dolui, S.K.: Selective Dye Adsorption by pH Modulation on Amine-Functionalized Reduced Graphene Oxide-Carbon Nanotube Hybrid. Ind. Eng. Chem. Res. 53, 16148–16155 (2014)CrossRefGoogle Scholar
  45. 45.
    Vadahanambi, S., Lee, S.-H., Kim, W.-J., Oh, I.-K.: Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 47, 10510–10517 (2013)Google Scholar
  46. 46.
    Kotal, M., Bhowmick, A.K.: Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J. Phys. Chem. C 117, 25865–25875 (2013)CrossRefGoogle Scholar
  47. 47.
    Madrakian, T., Afkhami, A., Ahmadi, M., Bagheri, H.: Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 196, 109–114 (2011)CrossRefGoogle Scholar
  48. 48.
    Azizian, S., Haerifar, M., Bashiri, H.: Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem. Eng. J. 146, 36–41 (2009)CrossRefGoogle Scholar
  49. 49.
    Yang, S., Han, C., Wang, X., Nagatsu, M.: Characteristics of cesium ion sorption from aqueous solution on bentonite-and carbon nanotube-based composites. J. Hazard. Mater. 274, 46–52 (2014)CrossRefGoogle Scholar
  50. 50.
    Yang, S., Shao, D., Wang, X., Hou, G., Nagatsu, M., Tan, X., Ren, X., Yu, J.: Design of chitosan-grafted carbon nanotubes: evaluation of How the–OH functional group affects Cs + adsorption. Marine Drugs 13, 3116–3131 (2015)CrossRefGoogle Scholar
  51. 51.
    Wang, W., Ma, H., Zheng, W., An, D., Na, C.: Multifunctional and Recollectable Carbon Nanotube Ponytails for Water Purification, ACS App. Mater. Inter. (2014)Google Scholar
  52. 52.
    Yu, F., Ma, J., Wang, J., Zhang, M., Zheng, J.: Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146, 162–172 (2016)CrossRefGoogle Scholar
  53. 53.
    Rao, W., Cai, R., Yin, Y., Long, F., Zhang, Z.: Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples. Talanta 128, 170–176 (2014)CrossRefGoogle Scholar
  54. 54.
    Xu, L., Li, J., Zhang, M.: Adsorption characteristics of a novel carbon-nanotube-based composite adsorbent toward organic pollutants. Ind. Eng. Chem. Res. 54, 2379–2384 (2015)CrossRefGoogle Scholar
  55. 55.
    Shan, D., Deng, S., Zhao, T., Yu, G., Winglee, J., Wiesner, M.R.: Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chem. Eng. J. 294, 353–361 (2016)CrossRefGoogle Scholar
  56. 56.
    Wei, H., Deng, S., Huang, Q., Nie, Y., Wang, B., Huang, J., Yu, G.: Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 47, 4139–4147 (2013)CrossRefGoogle Scholar
  57. 57.
    Yang, C., Liu, P.: Chitosan/functionalized multiwalled carbon nanotubes multilayer hollow microspheres prepared via layer-by-layer assembly technique. Ind. Eng. Chem. Res. 51, 13346–13353 (2012)CrossRefGoogle Scholar
  58. 58.
    Gao, L., Yin, H., Mao, X., Zhu, H., Xiao, W., Wang, D.: Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking, Environ. Sci. Pollu. Res. 1–8 (2015)Google Scholar
  59. 59.
    Wang, H., Ma, H., Zheng, W., An, D., Na, C.: Multifunctional and recollectable carbon nanotube ponytails for water purification. ACS Appl. Mater. Interfaces. 6, 9426–9434 (2014)CrossRefGoogle Scholar
  60. 60.
    Indrawirawan, S., Sun, H., Duan, X., Wang, S.: Nanocarbons in different structural dimensions (0–3D) for phenol adsorption and metal-free catalytic oxidation. Appl. Catal. B 179, 352–362 (2015)CrossRefGoogle Scholar
  61. 61.
    Patiño, Y., Díaz, E., Ordóñez, S.: Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere 119, S124–S130 (2015)CrossRefGoogle Scholar
  62. 62.
    Beless, B., Rifai, H.S., Rodrigues, D.F.: Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution. Environ. Sci. Technol. 48, 10372–10379 (2014)CrossRefGoogle Scholar
  63. 63.
    Smith, S.C., Ahmed, F., Gutierrez, K.M., Rodrigues, D.F.: A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications. Chem. Eng. J. 240, 147–154 (2014)CrossRefGoogle Scholar
  64. 64.
    Apul, O.G., Wang, Q., Zhou, Y., Karanfil, T.: Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Water Res. 47, 1648–1654 (2013)CrossRefGoogle Scholar
  65. 65.
    Velzeboer, I., Kwadijk, C., Koelmans, A.: Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ. Sci. Technol. 48, 4869–4876 (2014)CrossRefGoogle Scholar
  66. 66.
    Gupta, V.K., Saleh, T.A.: Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Environ. Sci. Pollut. Res. 20, 2828–2843 (2013)CrossRefGoogle Scholar
  67. 67.
    Zhang, L., Fang, P., Yang, L., Zhang, J., Wang, X.: Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater. Langmuir 29, 3968–3975 (2013)CrossRefGoogle Scholar
  68. 68.
    Yan, X., Shi, B., Lu, J., Feng, C., Wang, D., Tang, H.: Adsorption and desorption of atrazine on carbon nanotubes. J. Colloid Interf. Sci. 321, 30–38 (2008)CrossRefGoogle Scholar
  69. 69.
    Cho, H.-H., Huang, H., Schwab, K.: Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27, 12960–12967 (2011)CrossRefGoogle Scholar
  70. 70.
    Zhou, S., Shao, Y., Gao, N., Deng, J., Tan, C.: Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Triclosan onto Multi-Walled Carbon Nanotubes. CLEAN–Soil Air Water 41, 539–547 (2013)CrossRefGoogle Scholar
  71. 71.
    Lu, Y., Jiang, M., Wang, C., Wang, Y., Yang, W.: Effects of matrix and functional groups on tylosin adsorption onto resins and carbon nanotubes. Water Air Soil Pollut. 224, 1–12 (2013)Google Scholar
  72. 72.
    Rambabu, N., Guzman, C.A., Soltan, J., Himabindu, V.: Adsorption characteristics of atrazine on granulated activated carbon and carbon nanotubes. Chem. Eng. Technol. 35, 272–280 (2012)CrossRefGoogle Scholar
  73. 73.
    Chen, G.-C., Shan, X.-Q., Wang, Y.-S., Pei, Z.-G., Shen, X.-E., Wen, B., Owens, G.: Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes. Environ. Sci. Technol. 42, 8297–8302 (2008)CrossRefGoogle Scholar
  74. 74.
    Chen, G.-C., Shan, X.-Q., Zhou, Y.-Q., Shen, X.-E., Huang, H.-L., Khan, S.U.: Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 169, 912–918 (2009)CrossRefGoogle Scholar
  75. 75.
    Fang, Q., Chen, B.: Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution. Carbon 50, 2209–2219 (2012)CrossRefGoogle Scholar
  76. 76.
    Sotelo, J.L., Rodríguez, A.R., Mateos, M.M., Hernández, S.D., Torrellas, S.A., Rodríguez, J.G.: Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Health Part B 47, 640–652 (2012)CrossRefGoogle Scholar
  77. 77.
    Chen, G.-C., Shan, X.-Q., Pei, Z.-G., Wang, H., Zheng, L.-R., Zhang, J., Xie, Y.-N.: Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. J. Hazard. Mater. 188, 156–163 (2011)CrossRefGoogle Scholar
  78. 78.
    Al-Khateeb, L.A., Obaid, A.Y., Asiri, N.A., Salam, M.A.: Adsorption behavior of estrogenic compounds on carbon nanotubes from aqueous solutions: Kinetic and thermodynamic studies. J. Ind. Eng. Chem. 20, 916–924 (2014)CrossRefGoogle Scholar
  79. 79.
    Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263–266 (2002)CrossRefGoogle Scholar
  80. 80.
    Long, R.Q., Yang, R.T.: Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 123, 2058–2059 (2001)CrossRefGoogle Scholar
  81. 81.
    Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Wu, D.: Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057–1062 (2003)CrossRefGoogle Scholar
  82. 82.
    Lu, C., Liu, C.: Removal of nickel (II) from aqueous solution by carbon nanotubes. J. Chem. Technol. Biotechnol. 81, 1932–1940 (2006)CrossRefGoogle Scholar
  83. 83.
    Wang, H., Zhou, A., Peng, F., Yu, H., Yang, J.: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II). J. Colloid Interface Sci. 316, 277–283 (2007)CrossRefGoogle Scholar
  84. 84.
    Wang, H., Zhou, A., Peng, F., Yu, H., Chen, L.: Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (II) in aqueous solution. Mater. Sci. Eng., A 466, 201–206 (2007)CrossRefGoogle Scholar
  85. 85.
    Li, Y.-H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y.: Adsorption thermodynamic, kinetic and desorption studies of Pb 2 + on carbon nanotubes. Water Res. 39, 605–609 (2005)CrossRefGoogle Scholar
  86. 86.
    Lu, C., Liu, C., Rao, G.P.: Comparisons of sorbent cost for the removal of Ni 2 + from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mater. 151, 239–246 (2008)CrossRefGoogle Scholar
  87. 87.
    Li, X., Chen, S., Fan, X., Quan, X., Tan, F., Zhang, Y., Gao, J.: Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J. Colloid Interface Sci. 447, 120–127 (2015)CrossRefGoogle Scholar
  88. 88.
    Stumm, W., Morgan, J.J., Aquatic chemistry: chemical equilibria and rates in natural waters, Wiley (2012)Google Scholar
  89. 89.
    Engates, K.E., Shipley, H.J.: Adsorption of Pb Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollu. Res. 18, 386–395 (2011)CrossRefGoogle Scholar
  90. 90.
    Cheng, J., Chang, P.R., Zheng, P., Ma, X.: Characterization of magnetic carbon nanotube–cyclodextrin composite and its adsorption of dye. Ind. Eng. Chem. Res. 53, 1415–1421 (2014)CrossRefGoogle Scholar
  91. 91.
    Saleh, N.B., Pfefferle, L.D., Elimelech, M.: Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 44, 2412–2418 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rasel Das
    • 1
    Email author
  • Sayonthoni Das Tuhi
    • 2
  • Syed Mohammed Javaid Zaidi
    • 3
  1. 1.Chemical DepartmentLeibniz Institute of Surface EngineeringLeipzigGermany
  2. 2.Department of MicrobiologyUniversity of ChittagongChittagongBangladesh
  3. 3.Center for Advanced Materials, Qatar UniversityDohaQatar

Personalised recommendations