Advertisement

FSM Inference from Long Traces

  • Florent Avellaneda
  • Alexandre Petrenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10951)

Abstract

Inferring a minimal finite state machine (FSM) from a given set of traces is a fundamental problem in computer science. Although the problem is known to be NP-complete, it can be solved efficiently with SAT solvers when the given set of traces is relatively small. On the other hand, to infer an FSM equivalent to a machine which generates traces, the set of traces should be sufficiently representative and hence large. However, the existing SAT-based inference techniques do not scale well when the length and number of traces increase. In this paper, we propose a novel approach which processes lengthy traces incrementally. The experimental results indicate that it scales sufficiently well and time it takes grows slowly with the size of traces.

Keywords

Machine inference Machine identification SAT solver 

Notes

Acknowledgements

This work was partially supported by MESI (Ministère de l’Économie, Science et Innovation) of Gouvernement du Québec, NSERC of Canada and CAE.

References

  1. 1.
    Abel, A., Reineke, J.: Memin: SAT-based exact minimization of incompletely specified mealy machines. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 94–101. IEEE (2015)Google Scholar
  2. 2.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the presence of symmetry. In: Proceedings of the 39th annual Design Automation Conference, pp. 731–736. ACM (2002)Google Scholar
  3. 3.
    Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)CrossRefGoogle Scholar
  4. 4.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Audemard, G., Simon, L.: The glucose SAT solver (2013)Google Scholar
  6. 6.
    Biere, A.: Picosat essentials. J. Satisfiability Boolean Model. Comput. 4, 75–97 (2008)MATHGoogle Scholar
  7. 7.
    Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 100(6), 592–597 (1972)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brown, C.A., Finkelstein, L., Purdom Jr., P.W.: Backtrack searching in the presence of symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99–110. Springer, Heidelberg (1989).  https://doi.org/10.1007/3-540-51083-4_51CrossRefGoogle Scholar
  9. 9.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefGoogle Scholar
  10. 10.
    Een, N., Sörensson, N.: MiniSat: a SAT solver with conflict-clause minimization. In: 8th SAT-5 (2005)Google Scholar
  11. 11.
    Giantamidis, G., Tripakis, S.: Learning moore machines from input-output traces. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 291–309. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48989-6_18CrossRefGoogle Scholar
  12. 12.
    Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gold, E.M.: Complexity of automaton identification from given data. Inf. Control 37(3), 302–320 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_40CrossRefGoogle Scholar
  15. 15.
    Heule, M.J.H., Verwer, S.: Software model synthesis using satisfiability solvers. Empirical Softw. Eng. 18(4), 825–856 (2013)CrossRefGoogle Scholar
  16. 16.
    Kella, J.: Sequential machine identification. IEEE Trans. Comput. 100(3), 332–338 (1971)CrossRefGoogle Scholar
  17. 17.
    Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size DFAS. Mach. Learn. 44(1), 93–119 (2001)CrossRefGoogle Scholar
  18. 18.
    Oncina, J., García, P.: Identifying regular languages in polynomial time. Adv. Struct. Syntactic Pattern Recogn. 5(99–108), 15–20 (1992)Google Scholar
  19. 19.
    Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.: Model learning as a satisfiability modulo theories problem. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77313-1_14CrossRefGoogle Scholar
  20. 20.
    Soos, M.: Cryptominisat 2.5.0. SAT Race competitive event booklet (2010)Google Scholar
  21. 21.
    Veelenturf, L.P.J.: Inference of sequential machines from sample computations. IEEE Trans. Comput. 2(C–27), 167–170 (1978)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05089-3_20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CRIMMontrealCanada

Personalised recommendations