Advertisement

Multi-robot LTL Planning Under Uncertainty

  • Claudio Menghi
  • Sergio Garcia
  • Patrizio Pelliccione
  • Jana Tumova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10951)

Abstract

Robot applications are increasingly based on teams of robots that collaborate to perform a desired mission. Such applications ask for decentralized techniques that allow for tractable automated planning. Another aspect that current robot applications must consider is partial knowledge about the environment in which the robots are operating and the uncertainty associated with the outcome of the robots’ actions.

Current planning techniques used for teams of robots that perform complex missions do not systematically address these challenges: (1) they are either based on centralized solutions and hence not scalable, (2) they consider rather simple missions, such as A-to-B travel, (3) they do not work in partially known environments. We present a planning solution that decomposes the team of robots into subclasses, considers missions given in temporal logic, and at the same time works when only partial knowledge of the environment is available. We prove the correctness of the solution and evaluate its effectiveness on a set of realistic examples.

References

  1. 1.
    The Angen Research and Innovation Apartment (2014). http://angeninnovation.se
  2. 2.
    Bernasconi, A., Menghi, C., Spoletini, P., Zuck, L.D., Ghezzi, C.: From model checking to a temporal proof for partial models. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol. 10469, pp. 54–69. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66197-1_4CrossRefGoogle Scholar
  3. 3.
    Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Motion planning with hybrid dynamics and temporal goals. In: Conference on Decision and Control (CDC), pp. 1108–1115. IEEE (2010)Google Scholar
  4. 4.
    Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with temporal goals. In: International Conference on Robotics and Automation (ICRA), pp. 2689–2696. IEEE (2010)Google Scholar
  5. 5.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48683-6_25CrossRefGoogle Scholar
  6. 6.
    Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44618-4_14CrossRefGoogle Scholar
  7. 7.
    Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), 1–38 (2004)zbMATHGoogle Scholar
  8. 8.
    Chen, Y., Tůmová, J., Ulusoy, A., Belta, C.: Temporal logic robot control based on automata learning of environmental dynamics. Int. J. Robot. Res. 32(5), 547–565 (2013)CrossRefGoogle Scholar
  9. 9.
    Cunningham, A.G., Galceran, E., Eustice, R.M., Olson, E.: MPDM: multipolicy decision-making in dynamic, uncertain environments for autonomous driving. In: International Conference on Robotics and Automation (ICRA), pp. 1670–1677 (2015)Google Scholar
  10. 10.
    Diaz, J.F., Stoytchev, A., Arkin, R.C.: Exploring unknown structured environments. In: FLAIRS Conference, pp. 145–149. AAAI Press (2001)Google Scholar
  11. 11.
    Ding, X.C.D., Smith, S.L., Belta, C., Rus, D.: LTL control in uncertain environments with probabilistic satisfaction guarantees*. IFAC Proc. Vol. 44(1), 3515–3520 (2011)CrossRefGoogle Scholar
  12. 12.
    Du Toit, N.E., Burdick, J.W.: Robot motion planning in dynamic, uncertain environments. IEEE Trans. Robot. 28(1), 101–115 (2012)CrossRefGoogle Scholar
  13. 13.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting, 1st edn. Cambridge University Press, New York (2016)zbMATHGoogle Scholar
  14. 14.
    Godefroid, P., Huth, M.: Model checking vs. generalized model checking: semantic minimizations for temporal logics. In: Logic in Computer Science, pp. 158–167. IEEE Computer Society (2005)Google Scholar
  15. 15.
    Godefroid, P., Piterman, N.: LTL generalized model checking revisited. Int. J. Softw. Tools Technol. Transf. 13(6), 571–584 (2011)CrossRefGoogle Scholar
  16. 16.
    Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL specifications. Int. J. Robot. Res. 34(2), 218–235 (2015)CrossRefGoogle Scholar
  17. 17.
    Guo, M., Johansson, K.H., Dimarogonas, D.V.: Revising motion planning under linear temporal logic specifications in partially known workspaces. In: International Conference on Robotics and Automation (ICRA), pp. 5025–5032. IEEE (2013)Google Scholar
  18. 18.
    Karras, C.D.U., Neumann, T., Rohr, T.N.A., Uemura, W., Ewert, D., Harder, N., Jentzsch, S., Meier, N., Reuter, S.: RoboCup logistics league rules and regulations (2016)Google Scholar
  19. 19.
    Khaliq, A.A., Saffiotti, A.: Stigmergy at work: planning and navigation for a service robot on an RFID floor. In: International Conference on Robotics and Automation (ICRA), pp. 1085–1092. IEEE (2015)Google Scholar
  20. 20.
    Kloetzer, M., Ding, X.C., Belta, C.: Multi-robot deployment from LTL specifications with reduced communication. In: Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 4867–4872. IEEE (2011)Google Scholar
  21. 21.
    Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)CrossRefGoogle Scholar
  22. 22.
    Kurniawati, H., Du, Y., Hsu, D., Lee, W.S.: Motion planning under uncertainty for robotic tasks with long time horizons. Int. J. Robot. Res. 30(3), 308–323 (2011)CrossRefGoogle Scholar
  23. 23.
    Lacerda, B., Parker, D., Hawes, N.: Optimal and dynamic planning for Markov decision processes with co-safe LTL specifications. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1511–1516 (2014)Google Scholar
  24. 24.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science, pp. 203–210. IEEE (1988)Google Scholar
  25. 25.
    Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large markov decision processes. Int. J. Softw. Tools Technol. Transf. 17(4), 457–467 (2015)CrossRefGoogle Scholar
  26. 26.
    Latombe, J.C.: Robot Motion Planning, vol. 124. Springer, New York (2012).  https://doi.org/10.1007/978-1-4615-4022-9CrossRefGoogle Scholar
  27. 27.
    Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition systems from goal-oriented requirements models. Autom. Softw. Eng. 15, 175–206 (2008)CrossRefGoogle Scholar
  28. 28.
    Loizou, S.G., Kyriakopoulos, K.J.: Automated planning of motion tasks for multi-robot systems. In: Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 78–83. IEEE (2005)Google Scholar
  29. 29.
    Menghi, C., Spoletini, P., Chechik, M., Ghezzi, C.: Supporting verification-driven incremental distributed design of components. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 169–188. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89363-1_10CrossRefGoogle Scholar
  30. 30.
    Menghi, C., Spoletini, P., Ghezzi, C.: Dealing with incompleteness in automata-based model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 531–550. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48989-6_32CrossRefGoogle Scholar
  31. 31.
    Menghi, C., Spoletini, P., Ghezzi, C.: COVER: Change-based goal verifier and reasoner. In: Knauss, E., et al. (eds.) Proceedings of the 22nd International Conference on Requirements Engineering: Foundation for Software Quality: Companion Proceeedings, REFSQ 2017, Essen, Germany, February 27, 2017, pp. 434–435, vol. 1796. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1796CrossRefGoogle Scholar
  32. 32.
    Menghi, C., Spoletini, P., Ghezzi, C.: Integrating goal model analysis with iterative design. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 112–128. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54045-0_9CrossRefGoogle Scholar
  33. 33.
    Menghi, C., Tsigkanos, C., Berger, T., Pelliccione, P., Ghezzi, C.: Property specification patterns for robotic missions. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27–June 03, pp. 434–435. ACM (2018).  https://doi.org/10.1145/3183440.3195044
  34. 34.
    Quottrup, M.M., Bak, T., Zamanabadi, R.: Multi-robot planning: a timed automata approach. In: International Conference on Robotics and Automation, vol. 5, pp. 4417–4422. IEEE (2004)Google Scholar
  35. 35.
    Roy, N., Gordon, G., Thrun, S.: Planning under uncertainty for reliable health care robotics. In: Yuta, S., Asama, H., Prassler, E., Tsubouchi, T., Thrun, S. (eds.) Field and Service Robotics, pp. 417–426. Springer, Heidelberg (2006).  https://doi.org/10.1007/10991459_40CrossRefGoogle Scholar
  36. 36.
    Schillinger, P., Bürger, M., Dimarogonas, D.: Decomposition of finite LTL specifications for efficient multi-agent planning. In: International Symposium on Distributed Autonomous Robotic Systems (2016)Google Scholar
  37. 37.
    Tsigkanos, C., Pasquale, L., Menghi, C., Ghezzi, C., Nuseibeh, B.: Engineering topology aware adaptive security: preventing requirements violations at runtime. In: International Requirements Engineering Conference (RE), pp. 203–212 (2014)Google Scholar
  38. 38.
    Tumova, J., Dimarogonas, D.V.: Multi-agent planning under local LTL specifications and event-based synchronization. Automatica 70, 239–248 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Uchitel, S., Alrajeh, D., Ben-David, S., Braberman, V., Chechik, M., De Caso, G., D’Ippolito, N., Fischbein, D., Garbervetsky, D., Kramer, J., et al.: Supporting incremental behaviour model elaboration. Comput. Sci. Res. Dev. 28(4), 279–293 (2013)CrossRefGoogle Scholar
  40. 40.
    Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)CrossRefGoogle Scholar
  41. 41.
    Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain markov decision processes with temporal logic specifications. In: Annual Conference on Decision and Control (CDC), pp. 3372–3379. IEEE (2012)Google Scholar
  43. 43.
    Yoo, C., Fitch, R., Sukkarieh, S.: Online task planning and control for fuel-constrained aerial robots in wind fields. Int. J. Robot. Res. 35(5), 438–453 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chalmers – University of GothenburgGothenburgSweden
  2. 2.Royal Institute of Technology (KTH)StockholmSweden

Personalised recommendations