Advertisement

Nuclear Medicine in Pediatrics

  • Pietro ZucchettaEmail author
  • Diego De Palma
Chapter

Abstract

Many distinctive aspects make pediatric nuclear medicine a well-defined sub-specialty. Disease spectrum is largely different from adults and children need careful personalization of the technique, taking into account physical and psychological development. An accurate evaluation of caregiver-child interactions is crucial to reduce exam-related stress on patient and family [1, 2].

Keywords

Patient management Radiation burden Bone scintigraphy Three-phase bone scintigraphy Thyroid scintigraphy Dynamic renal scintigraphy Static renal scintigraphy Radionuclide cystography MIBG scintigraphy [18F]FDG PET/CT Lung perfusion scintigraphy Myocardial perfusion scintigraphy Gastroesophageal reflux scintigraphy Gastric emptying scintigraphy Meckel diverticulum scintigraphy Benign musculoskeletal disease Osteomyelitis Chronic recurrent multifocal osteomyelitis Osteoid osteoma Stress fracture Osteosarcoma Ewing’s sarcoma Graves’ disease Differentiated thyroid carcinoma Congenital hypothyroidism Thyroid ectopy Congenital hydronephrosis Vesicoureteral reflux Urinary tract infection Neuroblastoma Malignant lymphomas Congenital heart disease Gastroesophageal reflux Pulmonary aspiration Ectopic gastric mucosa in Meckel diverticulum 

References

  1. 1.
    Bielsa IR. Pediatric nuclear medicine and its development as a specialty. Semin Nucl Med. 2017;47:102–9.CrossRefGoogle Scholar
  2. 2.
    Gelfand MJ, Clements C, MacLean JR. Nuclear medicine procedures in children: special considerations. Semin Nucl Med. 2017;47:110–7.CrossRefGoogle Scholar
  3. 3.
    Accorsi R, Karp JS, Surti S. Improved dose regimen in pediatric PET. J Nucl Med. 2010;51:293–300.CrossRefGoogle Scholar
  4. 4.
    Fahey FH. Dosimetry of pediatric PET/CT. J Nucl Med. 2009;50:1483–91.CrossRefGoogle Scholar
  5. 5.
    Strauss KJ, Goske MJ. Estimated pediatric radiation dose during CT. Pediatr Radiol. 2011;41(Suppl 2):472–81.CrossRefGoogle Scholar
  6. 6.
    Huda W, Ogden KM, Khorasani MR. Converting dose length product to effective dose at CT. Radiology. 2008;248:995–1003.CrossRefGoogle Scholar
  7. 7.
    Cravero JP, Havidich JE. Pediatric sedation – evolution and revolution. Paediatr Anaesth. 2011;21:800–9.CrossRefGoogle Scholar
  8. 8.
    Even-Sapir E, Flusser G, Lerman H, Lievshitz G, Metser U. SPECT/multislice low-dose CT: a clinically relevant constituent in the imaging algorithm of nononcologic patients referred for bone scintigraphy. J Nucl Med. 2007;48:319–24.PubMedGoogle Scholar
  9. 9.
    Andersen JB, Mortensen J, Bech BH, Hoigaard L, Borgwardt L. First experiences from Copenhagen with single photon emission computed tomography/computed tomography. Nucl Med Commun. 2011;32:356–62.CrossRefGoogle Scholar
  10. 10.
    De Palma D, Nadel HR, Bar-Sever Z. Skeletal scintigraphy with SPECT/CT in benign pediatric bone conditions. Clin Transl Imaging.  https://doi.org/10.1007/s40336-016-0169-8.CrossRefGoogle Scholar
  11. 11.
    Nadel HR. Pediatric bone scintigraphy update. Semin Nucl Med. 2010;40:31–40.CrossRefGoogle Scholar
  12. 12.
    Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.CrossRefGoogle Scholar
  13. 13.
    Drubach LA. Nuclear medicine techniques in pediatric bone imaging. Semin Nucl Med. 2017;47:190–203.CrossRefGoogle Scholar
  14. 14.
    Chiappini E, Camposampiero C, Lazzeri S, Indolfi G, De Martino M, Galli L. Epidemiology and management of acute haematogenous osteomyelitis in a tertiary paediatric center. Int J Environ Res Public Health. 2017;14(5):pii:E477.  https://doi.org/10.3390/ijerph14050477.CrossRefGoogle Scholar
  15. 15.
    Signore A, Glaudemans AW, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med. 2017;47:286–303.CrossRefGoogle Scholar
  16. 16.
    Jaramillo D, Dormans JP, Delgado J, Laor T, St Geme JW III. Haematogenous osteomyelitis in infants and children: imaging of a changing disease. Radiology. 2017;283:629–43.CrossRefGoogle Scholar
  17. 17.
    Weissman R, Uziel Y. Pediatric complex regional pain syndrome: a review. Pediatr Rheumatol Online J. 2016;14:29.CrossRefGoogle Scholar
  18. 18.
    Ariza Jiménez AB, Núñez Cuadros E, Galindo Zavala R, Núñez Caro L, Díaz-Cordobés Soriano G, et al. Recurrent multifocal osteomyelitis in children: experience in a tertiary care center. Reumatol Clin. 2017;pii:S1699–258.Google Scholar
  19. 19.
    Khanna G, Sato TS, Ferguson P. Imaging of chronic recurrent multifocal osteomyelitis. Radiographics. 2009;29:1159–77.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Sharma P, Mukherjee A, Karunanithi S, Nadarajah J, Gamanagatti S, Khan SA, et al. 99mTc-Methylenediphosphonate SPECT/CT as the one-stop imaging modality for the diagnosis of osteoid osteoma. Nucl Med Commun. 2014;35:876–83.CrossRefGoogle Scholar
  22. 22.
    Alkhawaldeh K, Al Ghuweri A, Kawar J, Jaafreh A. Back pain in children and diagnostic value of 99mTc-MDP bone scintigraphy. Acta Inform Med. 2014;22:297–301.CrossRefGoogle Scholar
  23. 23.
    Matcuk GR Jr, Mahanty SR, Skalski MR, Patel DB, White EA, Gottsegen CJ. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg Radiol. 2016;23:365–75.CrossRefGoogle Scholar
  24. 24.
    Carrol PS, Pieter GH, Raijmakers M, Tuinzing DB. Comparison of planar bone scintigraphy and single photon emission computed tomography in patients suspected of having unilateral condylar hyperactivity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:426–32.CrossRefGoogle Scholar
  25. 25.
    Williams JL, Paul D, Bisset G III. Thyroid disease in children: part 2. State-of-the-art imaging in pediatric hyperthyroidism. Pediatr Radiol. 2013;43:1254–64.CrossRefGoogle Scholar
  26. 26.
    Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. The ATA Guidelines Task Force on Pediatric Thyroid Cancer. Thyroid. 2015;25:716–59.CrossRefGoogle Scholar
  27. 27.
    Machac J. Thyroid cancer in pediatrics. Endocrinol Metab Clin N Am. 2016;45:359–404.CrossRefGoogle Scholar
  28. 28.
    Luster M, Pfestroff A, Hänscheid H, Verburg FA. Radioiodine therapy. Semin Nucl Med. 2017;47:126–34.CrossRefGoogle Scholar
  29. 29.
    Luster M, Handkiewicz-Junak D, Grossi A, Zacharin M, Taïeb D, Cruz O, et al. Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab. 2009;94:3948–53.CrossRefGoogle Scholar
  30. 30.
    Keller-Petrot I, Leger J, Sergent-Alaoui A, de Labriolle-Vaylet C. Congenital hypothyroidism: role of nuclear medicine. Semin Nucl Med. 2017;47:135–42.CrossRefGoogle Scholar
  31. 31.
    Mendichovszky I, Solar BT, Smeulders N, Easty M, Biassoni L. Nuclear medicine in pediatric nephro-urology: an overview. Semin Nucl Med. 2017;47:204–28.CrossRefGoogle Scholar
  32. 32.
  33. 33.
  34. 34.
    Biassoni L. Pitfalls and limitations of radionuclide renal imaging in pediatrics. Semin Nucl Med. 2015;45:411–27.CrossRefGoogle Scholar
  35. 35.
    Ismaili K, Piepsz A. The antenatally detected pelvi-ureteric junction stenosis: advances in renography and strategy of management. Pediatr Radiol. 2013;43:428–35.CrossRefGoogle Scholar
  36. 36.
    La Scola C, De Mutiis C, Hewitt IK, Puccio G, Toffolo A, Zucchetta P, et al. Different guidelines for imaging after first UTI in febrile infants: yield, cost, and radiation. Pediatrics. 2013;131:e665–71.CrossRefGoogle Scholar
  37. 37.
    Herz DB. The top-down approach: an expanded methodology. J Urol. 2010;183:856–7.CrossRefGoogle Scholar
  38. 38.
    Pfluger T, Piccardo A. Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med. 2017;47:143–57.CrossRefGoogle Scholar
  39. 39.
    Lewington V, Lambert B, Poetschger U, Sever ZB, Giammarile F, McEwan AJ, et al. 123I-mIBG scintigraphy in neuroblastoma: development of a SIOPEN semi-quantitative reporting method by an international panel. Eur J Nucl Med Mol Imaging. 2017;44:234–41.CrossRefGoogle Scholar
  40. 40.
    Lopci E, Piccardo A, Nanni C, Altrinetti V, Garaventa A, Pession A, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37:e73–8.CrossRefGoogle Scholar
  41. 41.
    Harrison DJ, Parisi MT, Shulkin BL. The role of 18F-FDG-PET/CT in pediatric sarcoma. Semin Nucl Med. 2017;47:229–41.CrossRefGoogle Scholar
  42. 42.
    Kluge R, Kurch L, Georgi T, Metzger M. Current role of FDG-PET in pediatric Hodgkin’s lymphoma. Semin Nucl Med. 2017;47:242–57.CrossRefGoogle Scholar
  43. 43.
    Ntsinjana HN, Tann O, Taylor AM. Trends in pediatric cardiovascular magnetic resonance imaging. Acta Radiol. 2013;54:1063–74.CrossRefGoogle Scholar
  44. 44.
    Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42:870–86.CrossRefGoogle Scholar
  45. 45.
    Kathiria NN, Higgins CB, Ordovas KG. Advances in MR imaging assessment of adults with congenital heart disease. Magn Reson Imaging Clin N Am. 2015;23:35–40.CrossRefGoogle Scholar
  46. 46.
    Chan FP, Hanneman K. Computed tomography and magnetic resonance imaging in neonates with congenital cardiovascular disease. Semin Ultrasound CT MR. 2015;36:146–60.CrossRefGoogle Scholar
  47. 47.
    Dacher JN, Barre E, Durand I, Hazelzet T, Brasseur-Daudruy M, Blondiaux É, et al. CT and MR imaging in congenital cardiac malformations: where do we come from and where are we going? Diagn Interv Imaging. 2016;97:505–12.CrossRefGoogle Scholar
  48. 48.
    Milanesi O, Stellin G, Zucchetta P. Nuclear medicine in pediatric cardiology. Semin Nucl Med. 2017;47:158–69.CrossRefGoogle Scholar
  49. 49.
    Robinson B, Goudie B, Remmert J, Gidding SS. Usefulness of myocardial perfusion imaging with exercise testing in children. Pediatr Cardiol. 2012;33:1061–8.CrossRefGoogle Scholar
  50. 50.
    Bar-Sever Z. Scintigraphic evaluation of gastroesophageal reflux and pulmonary aspiration in children. Semin Nucl Med. 2017;47:275–85.CrossRefGoogle Scholar
  51. 51.
    Vali R, Daneman A, McQuattie S, Shammas A. The value of repeat scintigraphy in patients with a high clinical suspicion for Meckel diverticulum after a negative or equivocal first Meckel scan. Pediatr Radiol. 2015;45:1506–14.CrossRefGoogle Scholar
  52. 52.
    Biassoni L, Easty M, Sinha C. Technetium-99m-pertechnetate scintigraphy in children with symptomatic Meckel’s diverticulum. Nucl Med Commun. 2015;36:406–7.CrossRefGoogle Scholar

Further Reading

  1. Grant FD. 18F-fluoride PET and PET/CT in children and young adults. PET Clin. 2014;9:287–97.CrossRefGoogle Scholar
  2. Kwatra NS, Sarma A, Lee EY. Practical indication-based pediatric nuclear medicine studies: update and review. Radiol Clin North Am. 2017;55:803–44.CrossRefGoogle Scholar
  3. Lassmann M, Treves ST. EANM/SNMMI Paediatric Dosage Harmonization Working Group. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41:1036.CrossRefGoogle Scholar
  4. Nadel HR. SPECT/CT in pediatric patient management. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S104–14.CrossRefGoogle Scholar
  5. Parisi MT, Bermo MS, Alessio AM, Sharp SE, Gelfand MJ, Shulkin BL. Optimization of pediatric PET/CT. Semin Nucl Med. 2017;47:258–74.CrossRefGoogle Scholar
  6. Parisi MT, Eslamy H, Mankoff D. Management of differentiated thyroid cancer in children: focus on the American Thyroid Association pediatric guidelines. Semin Nucl Med. 2016;46:147–64.CrossRefGoogle Scholar
  7. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36:258–78.CrossRefGoogle Scholar
  8. Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med. 2015;56:274–86.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nuclear Medicine DepartmentUniversity Hospital of PaduaPaduaItaly
  2. 2.Nuclear Medicine Department“H. Circolo” VareseVareseItaly

Personalised recommendations