Radionuclide Imaging of the Nephro-Urinary Tract

  • Duccio VolterraniEmail author
  • Federica Orsini
  • Federica Guidoccio


The kidneys are located in the retroperitoneal space at the sides of the psoas muscle (D11-L3 tract), about 7 cm in depth from the posterior abdominal wall. The left kidney is typically somewhat more superior in position than the right kidney. The upper poles are normally oriented more medially and posteriorly than the lower poles. The medial margin of each kidney is marked by a deep fissure, known as the renal hilum that acts as a gateway to the kidney.


Kidneys Urinary tract Radiopharmaceuticals 99mTc-DTPA 51Cr-EDTA 123I-Hippuran 99mTc-MAG3 99mTc-DMSA Tubular extraction rate Glomerular filtration rate Effective renal plasma flow Dynamic or sequential renal scintigraphy Activity/time curves Renograms Time to peak, Excretion half-time Mean transit time Perfusion index Input function Transfer function Fourier transform Convolution operation Deconvolution operation Gates approach Tønnesen algorithm for attenuation correction Two-compartment approach Stewart/Hamilton principle Single-compartment approach Frusemide test Hydronephrosis Obstructive nephropathy Captopril test Renovascular hypertension Static renal scintigraphy Pyelonephritis Radionuclide cystography Vesicoureteral reflux [18F]FDG PET/CT Tumors of the nephro-urinary tract 


  1. 1.
    Blaufox MD. The current status of renal radiopharmaceuticals. A review. Contrib Nephrol. 1987;56:31–7.CrossRefGoogle Scholar
  2. 2.
    Durand E, Prigent A. The basics of renal imaging and function studies. Q J Nucl Med. 2002;46:249–67.PubMedGoogle Scholar
  3. 3.
    Wedeen RP, Blaufox MD. The normal renogram. In: Blaufox MD, editor. Evaluation of renal function and disease with radionuclides: the upper urinary tract. 2nd ed. Basel: Karger; 1989. p. 116–29.Google Scholar
  4. 4.
    Zuckier LS, Freeman LM. Principles of renal imaging with radionuclides. In: Blaufox MD, editor. Evaluation of renal function and disease with radionuclides: the upper urinary tract. 2nd ed. Basel: Karger; 1989. p. 130–48.Google Scholar
  5. 5.
    Peters AM, George P, Ballardie F, Gordon I, Todd-Pokropek A. Appropriate selection of background for 99mTc-DTPA renography. Nucl Med Commun. 1988;9:973–85.CrossRefGoogle Scholar
  6. 6.
    Hilson AJ, Maisey MN, Brown CB, Ogg CS, Bewick MS. Dynamic renal transplant imaging with 99mTc-DTPA (Sn) supplemented by a transplant perfusion index in the management of renal transplants. J Nucl Med. 1978;19:994–1000.PubMedGoogle Scholar
  7. 7.
    Russell CD, Japanwalla M, Khan S, Scott JW, Dubovsky EV. Techniques for measuring renal transit time. Eur J Nucl Med. 1995;22:1372–8.CrossRefGoogle Scholar
  8. 8.
    Gates GF. Computation of glomerular filtration rate with 99mTc-DTPA: an in-house computer program. J Nucl Med. 1984;25:613–8.PubMedGoogle Scholar
  9. 9.
    Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, et al. Report of the Radionuclides in Nephrourology Committee on renal clearance. J Nucl Med. 1996;37:1883–90.PubMedGoogle Scholar
  10. 10.
    Brown SCW. Nuclear medicine in the clinical diagnosis and treatment of obstructive uropathy. In: Murray IPC, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment, vol. 1. Edimburgh: Churchill Livingstone; 1994. p. 271–93.Google Scholar
  11. 11.
    O'Reilly P, Aurell M, Britton K, Kletter K, Rosenthal L, Testa T. Consensus on diuresis renography for investigating the dilated upper urinary tract. Radionuclides in Nephrourology Group. Consensus Committee on Diuresis Renography. J Nucl Med. 1996;37:1872–6.PubMedGoogle Scholar
  12. 12.
    Safian RD, Textor SC. Renal artery stenosis. New Engl J Med. 2001;344:431–42.CrossRefGoogle Scholar
  13. 13.
    Taylor A. Functional testing: ACEI renography. Semin Nephrol. 2000;20:437–44.PubMedGoogle Scholar
  14. 14.
    Fommei E, Volterrani D. Renal nuclear medicine. Semin Nucl Med. 1995;25:183–94.CrossRefGoogle Scholar
  15. 15.
    Fommei E, Ghione S, Hilson A, Mezzasalma L, Oei HY, Piepsz A, et al. Captopril test radionuclide in renovascular hypertension: a multicentre European study. Eur J Nucl Med. 1993;20:617–23.CrossRefGoogle Scholar
  16. 16.
    Gordon I. Indications for 99mTechnetium dimercapto-succinic acid scan in children. J Urol. 1987;137:464–7.CrossRefGoogle Scholar
  17. 17.
    Cao X, Xu X, Grant FD, Treves ST. Estimation of split renal function with 99mTc-DMSA SPECT: comparison between 3D volumetric assessment and 2D coronal projection imaging. AJR Am J Roentgenol. 2016;207:1324–8.CrossRefGoogle Scholar
  18. 18.
    Conway JJ. Radionuclide cystography. In: Tauxe WN, Dubovsky EV, editors. Nuclear medicine in clinical urology. East Norwalk: Appleton, Century and Crofts; 1985. p. 305–20.Google Scholar
  19. 19.
    Fettich J, Colarinha P, Fischer S, Frökier J, Gordon I, Hahn K, et al. Guidelines for direct radionuclide cystography in children. Eur J Nucl Med Mol Imaging. 2003;30:BP39–44.CrossRefGoogle Scholar
  20. 20.
    Scott AMD. Clinical role of 18F-fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001;166:825–30.CrossRefGoogle Scholar
  21. 21.
    Bouchelouche K, Choyke PL. PET/computed tomography in renal, bladder, and testicular cancer. PET Clin. 2015;10:361–74.CrossRefGoogle Scholar
  22. 22.
    Wong P, Bolton DM, Lee STLN, Davis ID, Scott AM. In-vivo imaging of cellular proliferation in renal cell carcinoma using 18F-FLT PET. J Urol. 2009;181(Suppl 4):155.CrossRefGoogle Scholar
  23. 23.
    Ammari S, Thiam R, Cuenod CA, Oudard S, Hernigou A, Grataloup C, et al. Radiological evaluation of response to treatment: application to metastatic renal cancers receiving anti-angiogenic treatment. Diagn Interv Imaging. 2014;95:527–39.CrossRefGoogle Scholar
  24. 24.
    Oosterwijk E. Carbonic anhydrase IX: historical and future perspectives. BJU Int. 2008;101(Suppl 4):2–7.CrossRefGoogle Scholar
  25. 25.
    Jensen HK, Nordsmark M, Donskov F, Marcussen N, von der MH. Immunohistochemical expression of carbonic anhydrase IX assessed over time and during treatment in renal cell carcinoma. BJU Int. 2008;101(Suppl 4):41–4.CrossRefGoogle Scholar
  26. 26.
    Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31:187–94.CrossRefGoogle Scholar
  27. 27.
    Brouwers A, Verel I, Van Eerd J, Visser G, Steffens M, Oosterwijk E, et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother Radiopharm. 2004;19:155–63.CrossRefGoogle Scholar
  28. 28.
    Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gönen M, Ruan S, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10.CrossRefGoogle Scholar
  29. 29.
    Czarnecka AM, Kornakiewicz A, Kukwa W, Szczylik C. Frontiers in clinical and molecular diagnostics and staging of metastatic clear cell renal cell carcinoma. Future Oncol. 2014;10:1095–111.CrossRefGoogle Scholar
  30. 30.
    Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, et al. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:985–94.CrossRefGoogle Scholar
  31. 31.
    Fuccio C, Spinapolice EG, Cavalli C, Palumbo R, D’Ambrosio D, Trifirò G. 18F-Fluoride PET/CT in the detection of bone metastases in clear cell renal cell carcinoma: discordance with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2013;40:1930–1.CrossRefGoogle Scholar
  32. 32.
    de Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensink HJ, Vaalburg W. Visualisation of bladder cancer using 11C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging. 2002;29:1283–8.CrossRefGoogle Scholar
  33. 33.
    Gofrit ON, Mishani E, Orevi M, Klein M, Freedman N, Pode D, et al. Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol. 2006;176:940–4.CrossRefGoogle Scholar
  34. 34.
    Picchio M, Treiber U, Beer AJ, Metz S, Bössner P, van Randenborgh H, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47:938–44.PubMedGoogle Scholar
  35. 35.
    Jana S, Blaufox MD. Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med. 2006;36:51–72.CrossRefGoogle Scholar
  36. 36.
    Ahlstrom H, Malmstrom PU, Letocha H, Andersson J, Langstrom B, Nilsson S. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol. 1996;37:180–5.CrossRefGoogle Scholar
  37. 37.
    Letocha H, Ahlström H, Malmström PU, Westlin JE, Fasth KJ, Nilsson S. Positron emission tomography with L-methyl-11C-methionine in the monitoring of therapy response in muscle-invasive transitional cell carcinoma of the urinary bladder. Br J Urol. 1994;74:767–74.CrossRefGoogle Scholar
  38. 38.
    Vargas HA, Akin O, Schoder H, Olgac S, Dalbagni G, Hricak H, et al. Prospective evaluation of MRI, 11C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radiol. 2012;81:4131–7.CrossRefGoogle Scholar
  39. 39.
    Orevi M, Klein M, Mishani E, Chisin R, Freedman N, Gofrit ON. 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med. 2012;37:e67–71.CrossRefGoogle Scholar
  40. 40.
    Chakraborty D, Bhattacharya A, Mete UK, Mittal BR. Comparison of 18F-fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med. 2013;38:616–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Duccio Volterrani
    • 1
    Email author
  • Federica Orsini
    • 2
  • Federica Guidoccio
    • 1
  1. 1.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  2. 2.Nuclear Medicine Unit“Maggiore della Carità” University HospitalNovaraItaly

Personalised recommendations