Advertisement

Radionuclide Imaging of Benign Pulmonary Diseases

  • Federica Guidoccio
  • Edoardo Airò
  • Giuliano Mariani
Chapter

Abstract

Molecular imaging, which is based on the ability to image alterations underlying diseases at the subcellular, molecular level, has the potential not only to detect disease early on—before anatomic abnormalities become obvious at morphologic imaging—but also to monitor the efficacy of treatment(s) before anatomic changes take place in response to therapy. These features imply the possibility to detect/diagnose disease early and accurately and to predict response to therapy early on during treatment, therefore to facilitate implementation in the medical practice of a true personalized medicine tailored to the needs/characteristics of the individual patient.

Keywords

Benign pulmonary disease Radionuclide imaging Pulmonary embolic disease Venous thromboembolism Pulmonary hypertension Interstitial pulmonary disease Respiratory function Lung anatomy 99mTc-MAA Radioactive gas 99mTc-DTPA 99mTc-colloid 99mTc-carbon dispersion Lung perfusion scintigraphy Lung ventilation scintigraphy Ventilation/perfusion scintigraphy Planar imaging SPECT/CT imaging [18F]FDG PET/CT 67Ga-citrate 

References

  1. 1.
    Barritt DW, Jordan SC. Anticoagulant drugs in the treatment of pulmonary embolism. A controlled trial. Lancet. 1960;1:1309–12.CrossRefGoogle Scholar
  2. 2.
    Coulden R. State-of-the-art imaging techniques in chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc. 2006;3:577–83.CrossRefGoogle Scholar
  3. 3.
    White RH. The epidemiology of venous thromboembolism. Circulation. 2003;107:I4–8.CrossRefGoogle Scholar
  4. 4.
    Heit JA. The epidemiology of venous thromboembolism in the community: implications for prevention and management. J Thromb Thrombolysis. 2006;21:23–9.CrossRefGoogle Scholar
  5. 5.
    Nordstrom M, Lindblad B. Autopsy-verified venous thromboembolism within a defined urban population – the city of Malmö, Sweden. APMIS. 1998;106:378–84.CrossRefGoogle Scholar
  6. 6.
    Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008;358:1037–52.CrossRefGoogle Scholar
  7. 7.
    Lehmann R, Suess C, Leus M, Luxembourg B, Miesbach W, Lindhoff-Last E, et al. Incidence, clinical characteristics, and long-term prognosis of travel-associated pulmonary embolism. Eur Heart J. 2009;30:233–41.CrossRefGoogle Scholar
  8. 8.
    Bajc M, Neilly JB, Miniati M, Schuemichen C, Meignan M, Jonson B, EANM Committee. EANM guidelines for ventilation/perfusion scintigraphy. Eur J Nucl Med Mol Imaging. 2009;36:1356–70.CrossRefGoogle Scholar
  9. 9.
    Parker JA, Coleman RE, Grady E, Royal HD, Siegel BA, Stabin MG, et al. SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol. 2012;40:57–65.CrossRefGoogle Scholar
  10. 10.
    Reilly JJ. Evidence-based preoperative evaluation of candidates for thoracotomy. Chest. 1999;116(Suppl):474S–6S.CrossRefGoogle Scholar
  11. 11.
    Beckles MA, Spiro S, Colis G, Rudd R. The physiologic evaluation of patients with lung cancer being considered for resectional surgery. Chest. 2003;123(Suppl):105S–14S.CrossRefGoogle Scholar
  12. 12.
    Tunariu N, Gibbs JR, Win Z. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med. 2007;48:680–4.CrossRefGoogle Scholar
  13. 13.
    Humplik BI, Sandrock D, Aurisch R, Richter WS, Ewert R, Munz DL. Scintigraphic results in patients with lung transplants: a prospective comparative study. Nuklearmedizin. 2005;44:62–8.CrossRefGoogle Scholar
  14. 14.
    Gates GF, Orme HW, Dore EK. Measurement of cardiac shunting with technetium-labeled albumin aggregates. J Nucl Med. 1971;12:746–9.PubMedGoogle Scholar
  15. 15.
    Jacobson AF, Herzog SA. Open bronchial stump post-pneumonectomy: findings on xenon-133 ventilation imaging. J Nucl Med. 1993;34:462–4.PubMedGoogle Scholar
  16. 16.
    Itti E, Fauroux B, Pigeot J, Isabey D, Clement A, Evangelista E, et al. Quantitative lung perfusion scan as a predictor of aerosol distribution heterogeneity and disease severity in children with cystic fibrosis. Nucl Med Commun. 2004;25:563–9.CrossRefGoogle Scholar
  17. 17.
    Levy SE, Simmons DH. Redistribution of alveolar ventilation following pulmonary thromboembolism in the dog. J Appl Physiol. 1974;36:60–8.CrossRefGoogle Scholar
  18. 18.
    Santolicandro A, Prediletto R, Fornai E, Formichi B, Begliuomini E, Giannella-Neto A, et al. Mechanisms of hypoxemia and hypocapnia in pulmonary embolism. Am J Respir Crit Care Med. 1995;152:336–47.CrossRefGoogle Scholar
  19. 19.
    Swenson EW, Finley TN, Guzman SV. Unilateral hypoventilation in man during temporary occlusion of one pulmonary artery. J Clin Invest. 1961;40:828–35.CrossRefGoogle Scholar
  20. 20.
    Allgood RJ, Wolfe WG, Ebert PA, Sabiston DC J. Effects of carbon dioxide on bronchoconstriction after pulmonary artery occlusion. Am J Phys. 1968;214:772–5.CrossRefGoogle Scholar
  21. 21.
    D’Angelo E, Salvo Calderini T, Tavola M. The effects of CO2 on respiratory mechanics in anesthetized paralyzed humans. Anesthesiology. 2001;94:604–10.CrossRefGoogle Scholar
  22. 22.
    Finley TN, Tooley WH, Swenson EW, Gardner RE, Clements JA. Pulmonary surface tension in experimental atelectasis. Am Rev Respir Dis. 1964;89:372–7.PubMedGoogle Scholar
  23. 23.
    Chernick V, Hodson WA, Greenfield LJ. Effect of chronic pulmonary artery ligation on pulmonary mechanics and surfactant. J Appl Physiol. 1966;21:1315–20.CrossRefGoogle Scholar
  24. 24.
    Miniati M, Prediletto R, Formichi B, Marini C, Di Ricco G, Tonelli L, et al. Accuracy of clinical assessment in the diagnosis of pulmonary embolism. Am J Respir Crit Care Med. 1999;159:864–71.CrossRefGoogle Scholar
  25. 25.
    Gottschalk A, Juni JE, Sostman HD, Coleman RE, Thrall J, McKusick KA, et al. Ventilation-perfusion scintigraphy in the PIOPED study. Part I. Data collection and tabulation. J Nucl Med. 1993;34:1109–18.PubMedGoogle Scholar
  26. 26.
    Gottschalk A, Sostman HD, Coleman RE, Juni JE, Thrall J, McKusick KA, et al. Ventilation-perfusion scintigraphy in the PIOPED study. Part II. Evaluation of the scintigraphic criteria and interpretation. J Nucl Med. 1993;34:1119–26.PubMedGoogle Scholar
  27. 27.
    Stein PD, Woodard PK, Weg JG, Wakefield TW, Tapson VF, Sostman HD, et al. Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II investigators. Am J Med. 2006;119:1048–55.CrossRefGoogle Scholar
  28. 28.
    Miniati M, Pistolesi M, Marini C, Di Ricco G, Formichi B, Prediletto R, et al. Value of perfusion lung scan in the diagnosis of pulmonary embolism: results of the Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis (PISA-PED). Am J Respir Crit Care Med. 1996;154:1387–93.CrossRefGoogle Scholar
  29. 29.
    Miniati M, Sostman HD, Gottschalk A, Monti S, Pistolesi M. Perfusion lung scintigraphy for the diagnosis of pulmonary embolism: a reappraisal and review of the prospective investigative study of pulmonary embolism diagnosis methods. Semin Nucl Med. 2008;38:450–61.CrossRefGoogle Scholar
  30. 30.
    Sostman HD, Gottschalk A. Prospective validation of the stripe sign in ventilation-perfusion scintigraphy. Radiology. 1992;184:455–9.CrossRefGoogle Scholar
  31. 31.
    Worsley DF, Alavi A, Aronchick JM, Chen JT, Greenspan RH, Ravin CE. Chest radiographic findings in patients with acute pulmonary embolism: observations from the PIOPED Study. Radiology. 1993;189:133–6.CrossRefGoogle Scholar
  32. 32.
    Eisner MD. Before diagnostic testing for pulmonary embolism: estimating the prior probability of disease. Am J Med. 2003;114:232–4.CrossRefGoogle Scholar
  33. 33.
    Kelly J, Hunt BJ. The utility of pretest probability assessment in patients with clinically suspected venous thromboembolism. J Thromb Haemost. 2003;1:1888–96.CrossRefGoogle Scholar
  34. 34.
    Wells PS, Anderson DR, Rodgers M, Ginsberg JS, Kearon C, Gent M, et al. Derivation of a simple clinical model to categorize patients’ probability of pulmonary embolism: increasing the model’s utility with simpliRED D-dimer. Thromb Haemost. 2000;83:416–20.CrossRefGoogle Scholar
  35. 35.
    Wicki J, Perneger TV, Junod AF, Bounameaux H, Perrier A. Assessing clinical probability of pulmonary embolism in the emergency ward. Arch Intern Med. 2001;161:92–7.CrossRefGoogle Scholar
  36. 36.
    Klok FA, Kruisman E, Spaan J, Nijkeuter M, Righini M, Aujesky D, et al. Comparison of the revised Geneva score with the Wells rule for assessing clinical probability of pulmonary embolism. J Thromb Haemost. 2008;6:40–4.CrossRefGoogle Scholar
  37. 37.
    Ceriani E, Combescure C, Le Gal G, Nendaz M, Perneger T, Bounameaux H, et al. Clinical prediction rules for pulmonary embolism: a systematic review and meta-analysis. J Thromb Haemost. 2010;8:957–70.PubMedGoogle Scholar
  38. 38.
    Miniati M, Pistolesi M. Assessing the clinical probability of pulmonary embolism. Q J Nucl Med. 2001;45:287–93.PubMedGoogle Scholar
  39. 39.
    Miniati M, Bottai M, Monti S, Salvadori M, Serasini L, Passera M. Simple and accurate prediction of the clinical probability of pulmonary embolism. Am J Respir Crit Care Med. 2008;178:290–4.CrossRefGoogle Scholar
  40. 40.
    Gu Y-H, Zhao Z. Role of three commonly used scoring systems in prediction of pulmonary thromboembolism in Xining area. Eur Rev Med Pharmacol Sci. 2014;18:3517–20.PubMedGoogle Scholar
  41. 41.
    Russell LA, Sigmund AE, Szymonifka J, Jawetz ST, Grond SE, Dey SA, et al. Does my patient have a pulmonary embolism? The Wells vs. PISA 2 rule in orthopedic patients. J Thromb Thrombolysis. 2018;45:417–22.CrossRefGoogle Scholar
  42. 42.
    Wagner HN Jr, Sabiston DC Jr, McAfee JG, Tow D, Stern HS. Diagnosis of massive pulmonary embolism in man by radioisotope scanning. N Engl J Med. 1964;271:377–84.CrossRefGoogle Scholar
  43. 43.
    Taplin GV, Johnson DE, Dore EK, Kaplan HS. Lung photoscan with macroaggregates of human serum radioalbumin. Experimental basis and initial clinical trials. Health Phys. 1964;10:1219–27.CrossRefGoogle Scholar
  44. 44.
    Paraskos VA, Adelstein SJ, Smith RE, Rickman FD, Grossman W, Dexter L, et al. Late prognosis of acute pulmonary embolism. N Engl J Med. 1973;289:55–8.CrossRefGoogle Scholar
  45. 45.
    Sostman HD, Neumann RD. The respiratory system. In: Harbert JC, Eckelman WC, Neumann RD, editors. Nuclear medicine – diagnosis and therapy. New York, NY: Thieme Medical Publishers; 1996. p. 553–84.Google Scholar
  46. 46.
    Lowe VJ, Sostman HD. Pulmonary embolism. In: Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. New York, NY: Churchill Livingstone; 2004. p. 29–46.Google Scholar
  47. 47.
    Reid JH, Coche EE, Inoue T, Kim EE, Dondi M, Watanabe N, et al. Is the lung scan alive and well? Facts and controversies in defining the role of lung scintigraphy for the diagnosis of pulmonary embolism in the era of MDCT. Eur J Nucl Med Mol Imaging. 2009;36:505–21.CrossRefGoogle Scholar
  48. 48.
    McNeil BJ, Holman BL, Adelstein SJ. The scintigraphic definition of pulmonary embolism. JAMA. 1974;227:753–6.CrossRefGoogle Scholar
  49. 49.
    Gutte H, Mortensen J, Jensen CV, Johnbeck CB, von der Recke P, Petersen CL, et al. Detection of pulmonary embolism with combined ventilation-perfusion SPECT and low-dose CT: head-to-head comparison with multidetector CT angiography. J Nucl Med. 2009;50:1987–92.CrossRefGoogle Scholar
  50. 50.
    Mazurek A, Dziuk M, Witkowska-Patena E, Piszczek S, Gizewska A. The utility of hybrid SPECT/CT lung perfusion scintigraphy in pulmonary embolism diagnosis. Respiration. 2015;90:393–401.CrossRefGoogle Scholar
  51. 51.
    Simanek M, Koranda P. The benefit of personalized hybrid SPECT/CT pulmonary imaging. Am J Nucl Med Mol Imaging. 2016;6:215–22.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hess S, Frary EC, Gerke O, Madsen PH. State-of-the-art imaging in pulmonary embolism: ventilation/perfusion single-photon emission computed tomography versus computed tomography angiography – controversies, results, and recommendations from a systematic review. Semin Thromb Hemost. 2016;42:833–45.CrossRefGoogle Scholar
  53. 53.
    Mortensen J, Gutte H. SPECT/CT and pulmonary embolism. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S81–90.CrossRefGoogle Scholar
  54. 54.
    Lu Y, Lorenzoni A, Fox JJ, Rademaker J, Vander Els N, Grewal RK, et al. Noncontrast perfusion single-photon emission CT/CT scanning: a new test for the expedited, high-accuracy diagnosis of acute pulmonary embolism. Chest. 2014;145:1079–88.CrossRefGoogle Scholar
  55. 55.
    Bhatia KD, Ambati C, Dhaliwal R, Paschkewitz R, Hsu E, Ho B, et al. SPECT-CT/VQ versus CTPA for diagnosing pulmonary embolus and other lung pathology: pre-existing lung disease should not be a contraindication. J Med Imaging Radiat Oncol. 2016;60:492–7.CrossRefGoogle Scholar
  56. 56.
    Le Roux PY, Robin P, Delluc A, Abgral R, Palard X, Tissot V, et al. Additional value of combining low-dose computed tomography to V/Q SPECT on a hybrid SPECT-CT camera for pulmonary embolism diagnosis. Nucl Med Commun. 2015;36:922–30.CrossRefGoogle Scholar
  57. 57.
    Musch G, Venegas JG. Positron emission tomography imaging of regional pulmonary perfusion and ventilation. Proc Am Thorac Soc. 2005;2:522–7.CrossRefGoogle Scholar
  58. 58.
    Bailey DL, Eslick EM, Schembri GP, Roach PJ. 68Ga PET ventilation and perfusion lung imaging – current status and future challenges. Semin Nucl Med. 2016;46:428–35.CrossRefGoogle Scholar
  59. 59.
    Lohrke J, Siebeneicher H, Berger M, Reinhardt M, Berndt M, Mueller A, et al. 18F-GP1, a novel PET tracer designed for high-sensitivity, low-background detection of thrombi. J Nucl Med. 2017;58:1094–9.CrossRefGoogle Scholar
  60. 60.
    Pengo V, Lensing AW, Prins MH, Marchiori A, Davidson BL, Tiozzo F, et al. Thromboembolic pulmonary hypertension study group. incidence of chronic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004;350:2257–64.CrossRefGoogle Scholar
  61. 61.
    Miniati M, Monti S, Bottai M, Scoscia E, Bauleo C, Tonelli L, et al. Survival and restoration of pulmonary perfusion in a long-term follow-up of patients after acute pulmonary embolism. Medicine (Baltimore). 2006;85:253–62.CrossRefGoogle Scholar
  62. 62.
    Donnamaria V, Palla A, Petruzzelli S, Carrozzi L, Pugliesi O, Giuntini C. Early and late follow-up of pulmonary embolism. Respiration. 1993;60:15–20.CrossRefGoogle Scholar
  63. 63.
    Palla A, Pazzagli M, Manganelli D, De Nitto P, Marini C, Rossi G, et al. Resolution of pulmonary embolism: effect of therapy and putative age of emboli. Respiration. 1997;64:50–3.CrossRefGoogle Scholar
  64. 64.
    Wartski M, Collignon MA. Incomplete recovery of lung perfusion after 3 months in patients with acute pulmonary embolism treated with antithrombotic agents. THESEE Study Group. Tinzaparin ou Heparin Standard: Evaluation dans l’Embolie Pulmonaire Study. J Nucl Med. 2000;41:1043–8.PubMedGoogle Scholar
  65. 65.
    Lang IM. Chronic thromboembolic pulmonary hypertension: not so rare after all. N Engl J Med. 2004;350:2236–8.CrossRefGoogle Scholar
  66. 66.
    Tunariu N, Gibbs SJR, Win Z, Gin-Sing W, Graham A, Gishen P, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med. 2007;48:680–4.CrossRefGoogle Scholar
  67. 67.
    Win T, Tasker A, Groves A, White C, Ritchie AJ, Wells FC, et al. Ventilation-perfusion scintigraphy to predict postoperative pulmonary function in lung cancer patients undergoing pneumonectomy. AJR Am J Roentgenol. 2006;187:1260–5.CrossRefGoogle Scholar
  68. 68.
    Silva M, Nunes H, Valeyre D, Sverzellati N. Imaging of sarcoidosis. Clin Rev Allergy Immunol. 2015;49:45–53.CrossRefGoogle Scholar
  69. 69.
    Mostard RL, Verschakelen JA, van Kroonenburgh MJ, Nelemans PJ, Wijnen PA, Vöö S, et al. Severity of pulmonary involvement and 18F-FDG PET activity in sarcoidosis. Respir Med. 2013;107:439–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Federica Guidoccio
    • 1
  • Edoardo Airò
    • 2
  • Giuliano Mariani
    • 1
  1. 1.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  2. 2.Fondazione CNR/Regione Toscana Gabriele MonasteroPisaItaly

Personalised recommendations