Impact of Rheumatic Musculoskeletal Disease on Biological and Neurocognitive Development in Adolescents and Young Adults

  • Damien McKay
  • Kate SteinbeckEmail author
Part of the In Clinical Practice book series (ICP)


Core to the understanding of the impact of chronic rheumatic musculoskeletal disease (RMD) in adolescents and young adults (AYA) is the acknowledgement of the impact of such diseases on puberty and growth. Recent advances in neuroscience have also enhanced our understanding of brain development during the second and third decades of life and informs how we communicate and engage with young people appropriate to their stage of cognitive development. This chapter reviews puberty and growth in the context of RMD and provides the clinical practitioners signposts and strategies for the assessment and management of AYA with RMD.


Puberty Growth Brain development Adolescence Rheumatic disease 


  1. 1.
    Simon D, Fernando C, Czernichow P, Prieur AM. Linear growth and final height in patients with systemic juvenile, idiopathic arthritis treated with long-term glucocorticoids. J Rheumatol. 2002;29:1296–300.PubMedGoogle Scholar
  2. 2.
    Keane VA. Assessment of growth. In: Stanton BF, Geme JF, Nina F, Schor NF, Kliegman RM, editors. Nelson textbook of pediatrics E-Book. Philadelphia: Elsevier; 2016. p. 84–9.Google Scholar
  3. 3.
    Biro FN, Kiess W. Contemporary trends in onset and completion of puberty, gain in height and adiposity. Endocr Dev. 2016;29:122–33.CrossRefGoogle Scholar
  4. 4.
    Livadas S, Chrousos GP. Control of the onset of puberty. Curr Opin Pediatr. 2016;28(4):551–8.CrossRefGoogle Scholar
  5. 5.
    Maher SE, Ali FI. Sexual maturation in Egyptian boys and girls with juvenile rheumatoid arthritis. Rheumatol Int. 2013;33:2123–6.CrossRefGoogle Scholar
  6. 6.
    McErlane F, Carrasco R, Kearsley-Fleet L, Baildam E, Wedderburn L, Foster H, et al. Growth patterns in early juvenile idiopathic arthritis: results from the Childhood Arthritis Prospective Study (CAPS). Semin Arthritis Rheum. 2017;
  7. 7.
    Mairs R, Nicholls D. Assessment and treatment of eating disorders in children and adolescents. Arch Dis Child. 2016;101:1168–75.CrossRefGoogle Scholar
  8. 8.
    Cramblitt B, Pritchard M. Media’s influence on the drive for muscularity in undergraduates. Eat Behav. 2013;14:441–6.CrossRefGoogle Scholar
  9. 9.
    Guzman J, Kerr T, Ward LM, Ma J, Oen K, Rosenberg A, et al. Growth and weight gain in children with juvenile idiopathic arthritis: results from the ReACCh-Out cohort. Pediatr Rheumatol. 2017;
  10. 10.
    Gaspari S, Marcovecchio ML, Breda L, Chiarelli F. Growth in juvenile idiopathic arthritis: the role of inflammation. Clin Exp Rheumatol. 2011;29:104–10.PubMedGoogle Scholar
  11. 11.
    Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF. Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: current evidence, gaps in knowledge and future directions. Endocr Rev. 2016;37(1):62–110.CrossRefGoogle Scholar
  12. 12.
    Rygg M, Pistorio A, Ravelli A, Maghnie M, Di Iorgi N, Bader-Meunier B, et al. A longitudinal PRINTO study on growth and puberty in juvenile systemic lupus erythematosus. Ann Rheum Dis. 2012;71:511–7.CrossRefGoogle Scholar
  13. 13.
    De Benedetti F, Brunner H, Ruperto N, Schneider R, Xavier R, Allen R, et al. Catch-up growth during tocilizumab therapy for systemic juvenile idiopathic arthritis: results from a phase III trial. Arthritis Rheumatol. 2015;67:840–8.CrossRefGoogle Scholar
  14. 14.
    Uettwiller F, Perlbarg J, Pinto G, Bader-Meunier B, Mouy R, Compeyrot-Lacassagne S, et al. Effect of biologic treatments on growth in children with juvenile idiopathic arthritis. J Rheumatol. 2014;41:128–35.CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Milojevic D. Protecting bone health in pediatric rheumatic disease: pharmacological considerations. Pediatr Drugs. 2017;19:193–211.CrossRefGoogle Scholar
  16. 16.
    Seitsalo S, Osterman K, Hyvãrinen H, Tallroth K, Schlenzka D, Poussa M. Progression of spondylolisthesis in children and adolescents. A long-term follow-up of 272 patients. Spine (Phila Pa 1976). 1991;16(4):417–21.CrossRefGoogle Scholar
  17. 17.
    Swain M, Kamper SJ, Maher CG, Broderick C, McKay D, Henschke N. Relationship between growth, maturation and musculoskeletal conditions in adolescents: a systematic review. Br J Sports Med. 2018;52:1246–52.CrossRefGoogle Scholar
  18. 18.
    Ferraù F, Korbonits M. Metabolic comorbidities in Cushing’s syndrome. Eur J Endocrinol. 2015;173:M133–57.CrossRefGoogle Scholar
  19. 19.
    Kelsey MM, Zeitler PS. Insulin resistance of puberty. Curr Diab Rep. 2016;16:64. Scholar
  20. 20.
    Bismuth E, Chevenne D, Czernichow P, Simon D. Moderate deterioration in glucose tolerance during high-dose growth hormone therapy in glucocorticoid treated patients with juvenile idiopathic arthritis. Horm Res Paediatr. 2010;73:465–72.CrossRefGoogle Scholar
  21. 21.
    Stone S, Khamashta MA, Nelson-Piercy C. Non-steroidal anti-inflammatory drugs and reversible female infertility; Is there a link? Drug Saf. 2002;25(8):545–51.CrossRefGoogle Scholar
  22. 22.
    Schipper HM. The impact of gonadal hormones on the expression of human neurological disorders. Neuroendocrinology. 2016;103:417–31.CrossRefGoogle Scholar
  23. 23.
    Canadian Paediatric Society. Adolescent sexual orientation. Paediatr Child Health. 2008;13:619–23.CrossRefGoogle Scholar
  24. 24.
    de Bastos M, Stegeman BH, Rosendaal FR, Van Hylckama, Vlieg A, Helmerhorst FM, et al. Combined oral contraceptives: venous thrombosis.Cochrane Database Syst Rev. 2014;(3):CD010813.
  25. 25.
    WHO: Medical eligibility for contraceptive use. Publication date: August 2015 ISBN: 978 92 4 154915 8; Programmes/Sexual and Reproductive Health Accessed 25 Feb 2018.
  26. 26.
    Ostensen M, Andreoli L, Brucato A, Cetin I, Chambers C, Clowse ME, et al. State of the art: reproduction and pregnancy in rheumatic diseases. Autoimmun Rev. 2014;14:376–86.CrossRefGoogle Scholar
  27. 27.
    Modesto W, Bahamondes MV, Bahamondes L. Prevalence of low bone mass and osteoporosis in long-term users of the injectable contraceptive depot medroxyprogesterone acetate. J Women’s Health. 2015;24:636–40.CrossRefGoogle Scholar
  28. 28.
    Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23:699–708.CrossRefGoogle Scholar
  29. 29.
    Sowers M, McConnell D, Gast K, Zheng H, Nan B, McCarthy JD, et al. Anti-Mullerian hormone and inhibin B variability during normal menstrual cycles. Fertil Steril. 2010;94:1482–6.CrossRefGoogle Scholar
  30. 30.
    Henes M, Froeschlin J, Taran FA, Brucker S, Rall KK, Xenitidis T, et al. Ovarian reserve alterations in premenopausal women with chronic inflammatory rheumatic diseases: impact of rheumatoid arthritis, Behcet’s disease and spondyloarthitis on anti-Mullerian hormone levels. Rheumatology. 2015;54:1709–12.CrossRefGoogle Scholar
  31. 31.
    Ostensen M. Sexual and reproductive health in rheumatic disease. Nat Rev Rheumatol. 2017;
  32. 32.
    Weber-Schoendorfer C, Chambers C, Wacker E, Beghin D, Bernard N. On behalf of the network of French pharmacovigilance centers. Pregnancy outcome after methotrexate treatment for rheumatic disease prior to or during early pregnancy: a prospective multicenter cohort study. Arthritis Rheumatol. 2014;66:1101–10. Scholar
  33. 33.
    Leroy C, Rigot LM, Leroy M, Decanter C, Le Mapihan K, Parent AS, et al. Immunosuppressive drugs and fertility. Orphanet J Rare Dis. 2015;10:136.CrossRefGoogle Scholar
  34. 34.
    Gutierrez J, Hwang K. The toxicity of methotrexate in male fertility and paternal teratogenicity. Expert Opin Drug Metab Toxicol. 2017;13(1):51–8.CrossRefGoogle Scholar
  35. 35.
    Weber-Schoendorfer C, Hoeltzenbein M, Wacker E, Meister R, Schaefer C. No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose methotrexate: an observational cohort study. Rheumatology. 2014;53(1 1):757–63.CrossRefGoogle Scholar
  36. 36.
    Giedd JN. The amazing teen brain. Sci Am. 2015;312(6):32–7.CrossRefGoogle Scholar
  37. 37.
    Herting M, Sowell E. Puberty and structural brain development in humans. Front Neuroendocrinol. 2017;44:122–37.CrossRefGoogle Scholar
  38. 38.
    Steinberg L. The influence of neuroscience on US Supreme Court decisions about adolescents’ criminal culpability. Nat Rev Neurosci. 2013;14(7):513–8.CrossRefGoogle Scholar
  39. 39.
    Levy DM, Ardoi SP, Schanberg LE. Neurocognitive impairment in children and adolescents with systemic lupus erythematosus. Nat Clin Pract Rheumatol. 2009;5:106–14.CrossRefGoogle Scholar
  40. 40.
    Tarokh L, Saletin JM, Carskadon MA. Sleep in adolescence: physiology, cognition and mental health. Neurosci Biobehav Rev. 2016;70:182–6.CrossRefGoogle Scholar
  41. 41.
    Bartel KA, Gradisar M, Willaimson P. Protective and risk factors for adolescent sleep: a meta-analytic review. Sleep Med Rev. 2015;21:72–85.CrossRefGoogle Scholar
  42. 42.
    Health Education England. Adolescent health Programme module AH02; healthy development: session 02_006 assessing developmental stage. Last accessed 15 June 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sydney Children’s Hospitals Network and Liverpool Hospital, Department of Rheumatology, The Children’s Hospital at WestmeadWestmeadAustralia
  2. 2.Medical Foundation Chair in Adolescent Medicine, Discipline of Child and Adolescent Health, University of Sydney, The Academic Department of Adolescent Medicine, The Children’s Hospital at WestmeadWestmeadAustralia

Personalised recommendations