Advertisement

Introduction to Dynamic Data Driven Applications Systems

  • Erik BlaschEmail author
  • Dennis Bernstein
  • Murali Rangaswamy
Chapter

Abstract

Dynamic Data Driven Application Systems (DDDAS) is a systems design framework that focuses on developments that incorporate high-dimensional physical models, run-time measurements, statistical methods, and computation architectures. One of the foremost applications of DDDAS successes was environmental assessment of natural disasters such as wild fire monitoring and volcanic plume detection. Monitoring the atmosphere with DDDAS principles has evolved into applications for space situational awareness, unmanned aerial vehicle (UAV) design, and biomedical applications. Recent efforts reflect the digital age of information management such as multimedia analysis, power grid control, and biohealth concerns. Underlying a majority of the DDDAS developments are advances in sensor design, signal processing and filtering, as well as computational architectures. The book highlights some of these advances for the reader, with more information available at the DDDAS society’s website: www.1dddas.org.

Keywords

Dynamic data driven application systems 

Notes

Acknowledgements

This work is supported by the DDDAS program of the Air Force Office of Scientific Research (AFOSR).

References

  1. 1.
    A. Aved, E. Blasch, Dynamic Data Driven Applications Systems (DDDAS) (2014). Website, www.1dddas.org
  2. 2.
    F. Darema, Grid computing and beyond: the context of dynamic data driven applications systems. Proc. IEEE 93(3), 692–697 (2005)CrossRefGoogle Scholar
  3. 3.
    F. Darema, The Next Generation Program (1998), http://www.nsf.gov/pubs/1999/nsf998/nsf998.htm
  4. 4.
    F. Darema, New software architecture for complex applications development and runtime support, Int. J. High-Performance Computation, Special Issue on Programming Environments, Clusters, and Computational Grids for Scientific Computing, Vol. 14, No. 3, (2000)Google Scholar
  5. 5.
    F. Darema, The next generation software program. Int. J. Parallel Prog. 33(2–3), 73–79 (June 2005). https://doi.org/10.1007/s10766-005-4785-6 CrossRefGoogle Scholar
  6. 6.
    D.S. Bernstein, A. Ridley, J. Cutler, A. Cohn, Transformative Advances in DDDAS with Application to Space Weather Monitoring, Project Report, Univ. Michigan, 2015.Google Scholar
  7. 7.
    C. Yang, M. Bakich et al., Pose Angular-Aiding for Maneuvering Target Tracking, in International Conference on Information Fusion, (2005)Google Scholar
  8. 8.
    J. Dunık, O. Straka, et al., Random-point-based filters: analysis and comparison in target tracking. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1403–1421 (2015)CrossRefGoogle Scholar
  9. 9.
    E.P. Blasch, E. Bosse, D.A. Lambert, High-Level Information Fusion Management and Systems Design Artech House, (2012)Google Scholar
  10. 10.
    F. Darema, The next generation software workshop – IPDPS’07, in IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2007)Google Scholar
  11. 11.
    F. Darema, Cyberinfrastructures of cyber-applications-systems. Procedia Comput. Sci. 1(1), 1287–1296 (2010). https://doi.org/10.1016/j.procs.2010.04.143 CrossRefGoogle Scholar
  12. 12.
    A.R. Chaturvedi, Society of simulation approach to dynamic integration of simulations, in IEEE Winter Simulation Conference (2006)Google Scholar
  13. 13.
    S. Sarkar, P. Chattopdhyay, A. Ray, S. Phoha, M. Levi, Alphabet size selection for symbolization of dynamic data-driven systems: an information-theoretic approach, in American Control Conference (ACC) (2015) pp. 5194–5199Google Scholar
  14. 14.
    V. Maroulas, K. Kang, I.D. Schizas, M.W. Berry, A learning drift homotopy particle filter, in International Conference on Information Fusion (2015) pp. 1930–1937Google Scholar
  15. 15.
    E. Blasch, Enhanced air operations using JView for an air-ground fused situation awareness udop, in IEEE/AIAA Digital Avionics Systems Conference (DASC), 2013. doi:https://doi.org/10.1109/DASC.2013.6712597
  16. 16.
    J. Michopoulos, Ddema: a data driven environment for multiphysics applications, in International Conference Computational Science (2003)Google Scholar
  17. 17.
    G. Carmichael, D.N. Daescu, A. Sandu, T. Chai, Computational aspects of chemical data assimilation into atmosphere models, in International Conference Computational Science (2003)Google Scholar
  18. 18.
    C. Evangelinos, R. Chang, P.F.J. Lermusiaux, N.M. Patrikalakis, Rapid real-time interdisciplinary ocean forecasting using adaptive sampling and adaptive modeling and legacy codes: component ecapsulation using xml, in International Conference Computational Science (2003)Google Scholar
  19. 19.
    M. Parashar, V. Matossian, W. Bangerth, H. Klie, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, M.F. Wheeler, Towards dynamic data-driven optimization of oil well placement, in International Conference Computational Science (2005)Google Scholar
  20. 20.
    B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B. Wilhelmson, M. Ramamurthy, Towards dynamically adaptive weather analysis and forecasting in LEAD, in International Conference Computational Science (2005)Google Scholar
  21. 21.
    T.B. Trafalis, I. Adrianto, M.B. Richman, Active learning with support vector machines for tornado prediction, in International Conference Computational Science (2007)Google Scholar
  22. 22.
    L. Ramakrishnan, Y. Simmhan, B. Plale, Realization of dynamically adaptive weather analysis and forecasting in LEAD: four years down the road, in International Conference Computational Science (2007)Google Scholar
  23. 23.
    L. Zhang, A. Sandu, Data assimilation in multiscale chemical transport models,in International Conference Computational Science (2007)Google Scholar
  24. 24.
    N. Roy, H.-L. Choi, D. Gombos, J. Hansen, J. How, S. Park, Adaptive observation strategies for forecast error minimization, in International Conference Computational Science (2007)Google Scholar
  25. 25.
    S. Ravela, Quantifying uncertainty for coherent structures. Procedia Comput. Sci. 9, 1187–1196 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Michopoulos, P. Tsompanopoulou, E. Houstis, A. Joshi, Agent-based simulation of data-driven fire propagation dynamics, in International Conference Computational Science (2004)Google Scholar
  27. 27.
    J. Mandel, J.D. Beezley, L.S. Bennethum, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Hatcher, M. Kim, A. Vodacek, A dynamic data driven wildland fire model, in International Conference Computational Science (2007)Google Scholar
  28. 28.
    J.D. Beezley, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Mandel, A. Vodacek, Z. Wang, Real-time data driven wildland fire modeling, in International Conference Computational Science (2008).Google Scholar
  29. 29.
    R. Rodriguez-Aseretto, M. Di Leo, A. Cortés, J.S. Miguel-Ayanz, A data-driven model for big forest fires behavior prediction in Europe. Procedia Comput. Sci. 18, 186–1870 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Wang, D. Chen, W. Liu, Y. Ma, Y. Wu, Z. Deng, DDDAS-based parallel simulation of threat Management for Urban Water Distribution Systems. Comput. Sci. Eng. 16(1), 8–17 (2014). https://doi.org/10.1109/MCSE.2012.89 CrossRefGoogle Scholar
  31. 31.
    A.K. Patra, M.I. Bursik, J. Dehn, M. Jones, M. Pavolonis, E.B. Pitman, T. Singh, P. Singla, E.R. Stefanescu, S. Pouget, P. Webley, Challenges in developing DDDAS based methodology for volcanic ash hazard analysis – effect of numerical weather prediction variability and parameter estimation. Procedia Comput. Sci. 18, 1871–1880 (2013)CrossRefGoogle Scholar
  32. 32.
    A.K. Patra, E.R. Stefanescu, R.M. Madankan, M.I. Bursik, E.B. Pitman, P. Singla, T. Singh, P. Webley, Fast construction of surrogates for UQ central to DDDAS application to volcanic ash transport. Procedia Comput. Sci. 29, 1227–1235 (2014)CrossRefGoogle Scholar
  33. 33.
    V.H.V.S. Rao, A. Sandu, A posteriori error estimates for DDDAS inference problems. Procedia Comput. Sci. 29, 1256–1265 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Metaxas, S. Venkataraman, C. Vogler, Image-based stress recognition using a model-based dynamic face tracking system, International Conference Computational Science (2004)Google Scholar
  35. 35.
    D. Metaxas, G. Tsechpenakis, Z. Li, Y. Huang, A. Kanaujia, Dynamically adaptive tracking of gestures and facial expressions, in International Conference Computational Science (2006)Google Scholar
  36. 36.
    A. Majumdar, A. Birnbaum, D. Choi, A. Trivedi, S.K. Warfield, K. Baldridge, P. Krysl, A dynamic data driven grid system for intra-operative image guided neurosurgery, in International Conference Computational Science (2005)Google Scholar
  37. 37.
    J.T. Oden, K.R. Diller, C. Bajaj, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz, Y. Feng, D. Fuentes, S. Prudhomme, M.N. Rylander, R. J. Stafford, Y. Zhang, Development of a computational paradigm for laser treatment of cancer, in International Conference Computational Science (2006)Google Scholar
  38. 38.
    C. Bajaj, J.T. Oden, K.R. Diller, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Bidaut, L. Demkowicz, A. Elliott, Y. Feng, D. Fuentes, B. Kwon, S. Prudhomme, R.J. Staord, Y. Zhang, Using cyber-infrastructure for dynamic data driven laser treatment of cancer, in International Conference Computational Science (2007)Google Scholar
  39. 39.
    I.S. Kim, J. Chandrasekar, A. Ridley, D.S. Bernstein, Data assimilation using the global ionosphere-thermosphere model, in International Conference Computational Science (2006).Google Scholar
  40. 40.
    S. Ravela, J. Marshall, C. Hill, A. Wong, S. Stransky, Real-time observatory for laboratory simulation of planetary circulation, in International Conference Computational Science pp. 1155–1162 (2007) Google Scholar
  41. 41.
    A.V. Morozov, A.J. Ridley, D.S. Bernstein, N. Collins, T.J. Hoar, J.L. Anderson, Data assimilation and driver estimation for the global ionosphere–thermosphere model using the ensemble adjustment Kalman filter. J. Atmos. Sol. Terr. Phys. 104, 126–136 (2013)CrossRefGoogle Scholar
  42. 42.
    A.G. Burrell, A. Goel, A.J. Ridley, D.S. Bernstein, Correction of the photoelectron heating efficiency within the global ionosphere-thermosphere model using retrospective cost model refinement. J. Atmos. Sol. Terr. Phys. 104, pp. 1155–1162 (2015)Google Scholar
  43. 43.
    C. Farhat, J.G. Michopoulos, F.K. Chang, L.J. Guibas, A.J. Lew, Towards a dynamic data driven system for structural and material health monitoring, in International Conference Computational Science (2006)Google Scholar
  44. 44.
    J. Cortial, C. Farhat, L.J. Guibas, M. Rajashekhar, Time-parallel exploitation of reduced-order modeling and sensor data reduction for structural and material health monitoring DDDAS, in International Conference Computational Science (2007)Google Scholar
  45. 45.
    E.E. Prudencio, P.T. Bauman, D. Faghihi, J.T. Oden, K. Ravi-Chandar, S.V. Williams, A dynamic data driven application system for real-time monitoring of stochastic damage. Procedia Comput. Sci. 18, 2056–2065 (2013)CrossRefGoogle Scholar
  46. 46.
    E.E. Prudencio, P.T. Bauman, D. Faghihi, K. Ravi-Chandar, J.T. Oden, A computational framework for dynamic data driven material damage control, based on Bayesian inference and model selection. Int. J. Numer. Methods Eng. 102(3–4), 379–403 (2015). https://doi.org/10.1002/nme.4669 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    D. Allaire, J. Chambers, R. Cowlagi, D. Kordonowy, M. Lecerf, L. Mainini, F. Ulker, K. Willcox, A baseline offine/online DDDAS capability for self-aware aerospace vehicles. Procedia Comput. Sci. 18, 1959–1968 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Allaire, D. Kordonowy, M. Lecerf, L. Mainini, K. Willcox, Multi-fidelity DDDAS methods with application to a self-aware aerospace vehicle. Procedia Comput. Sci. 29, 1182–1192 (2014)CrossRefGoogle Scholar
  49. 49.
    L. Peng, K. Mohseni, Sensor driven feedback for puff estimation using unmanned aerial vehicles, in International Conference on Unmanned Aircraft Systems (ICUAS) (2014) pp 562–569. doi:https://doi.org/10.1109/ICUAS.2014.6842298
  50. 50.
    E. Blasch, P. Paces, P. Kostek, K. Kramer, Summary of avionics technologies. IEEE Aerosp. Electron. Syst. Mag. 30(9), 6–11 (2015)CrossRefGoogle Scholar
  51. 51.
    W. Silva, E.W. Frew, W. Shaw-Cortez, Implementing path planning and guidance layers for dynamic soaring and persistence missions, in International Conference on Unmanned Aircraft Systems (ICUAS) (2015) pp. 92–101. doi:https://doi.org/10.1109/ICUAS.2015.7152279
  52. 52.
    S. Imai, E. Blasch, A. Galli, F. Lee, C.A. Varela, Airplane flight safety using error-tolerant data stream processing. IEEE Aerosp. Electron. Syst. Mag. 32(4), 4–17 (2017)CrossRefGoogle Scholar
  53. 53.
    A. Sandu, W. Liao, G.R. Carmichael, D. Henze, J.H. Seinfeld, T. Chai, D. Daescu, Computational aspects of data assimilation for aerosol dynamics, in International Conference Computational Science (2004)Google Scholar
  54. 54.
    S. Ravela, Amplitude-position formulation of data assimilation, in International Conference Computational Science (2006)Google Scholar
  55. 55.
    B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, G. Chen, Cooperative space object tracking using space-based optical sensors via consensus-based filters. IEEE Trans. Aerosp. Electron. Syst. 52(3), 1908–1936 (2016)CrossRefGoogle Scholar
  56. 56.
    S. Ravela, Two extensions of data assimilation by field alignment, in International Conference Computational Science (2007)Google Scholar
  57. 57.
    P. Tagade, S. Ravela, On a quadratic information measure for data assimilation, in American Control Conference (2014) pp. 598–603Google Scholar
  58. 58.
    T.C. Henderson, N. Boonsirisumpun, The impact of parameter estimation on model accuracy assessment. Procedia Comput. Sci. 18, 1969–1978 (2013)CrossRefGoogle Scholar
  59. 59.
    P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-driven environmental systems. Procedia Comput. Sci. 29, 1266–1276 (2014)CrossRefGoogle Scholar
  60. 60.
    E.P. Blasch, Dynamic data driven applications system concept for information fusion. Procedia Comput. Sci. 18, 1999–2007 (2013)CrossRefGoogle Scholar
  61. 61.
    N. Virani, S. Marcks, S. Sarkar, K. Mukherjee, A. Ray, S. Phoha, Dynamic data driven sensor array fusion for target detection and classification. Procedia Comput. Sci. 18, 2046–2055 (2013)CrossRefGoogle Scholar
  62. 62.
    E. Blasch, G. Seetharaman, F. Darema, Dynamic data driven applications systems (DDDAS) modeling for automatic target recognition. Proc. SPIE 8744 (2013)Google Scholar
  63. 63.
    B. Smith, P. Chattopadhyay, A. Ray, T.R. Damarla, Performance robustness of feature extraction for target detection & classification, in IEEE American Control Conference (2014)Google Scholar
  64. 64.
    T. Chin, K. Xiong, E. Blasch, Nonlinear target tracking for threat detection using RSSI and optical fusion, International Conference on Information Fusion (2015) pp. 1946–1953Google Scholar
  65. 65.
    B. Uzkent, M.J. Hoffman, A. Vodacek, J.P. Kerekes, B. Chen, Feature matching and adaptive prediction models in an object tracking DDDAS. Procedia Comput. Sci. 18, 1939–1948 (2013)CrossRefGoogle Scholar
  66. 66.
    R. Fujimoto, A. Guin, M. Hunter, H. Park, R. Kannan, G. Kanitkar, M. Milholen, S. Neal, P. Pecher, A dynamic data driven application system for vehicle tracking. Procedia Comput. Sci. 29, 1203–1215 (2014)CrossRefGoogle Scholar
  67. 67.
    B. Uzkent, M.J. Hoffman, A. Vodacek, Integrating hyperspectral likelihoods in a multidimensional assignment algorithm for aerial vehicle tracking. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4325–4333 (2016). https://doi.org/10.1109/JSTARS.2016.2560220 CrossRefGoogle Scholar
  68. 68.
    N. Nguyen, M.H.H. Khan, Context aware data acquisition framework for dynamic data driven applications systems (DDDAS), in IEEE Military Communications Conference (2013) pp. 334–341. doi:https://doi.org/10.1109/MILCOM.2013.65
  69. 69.
    N. Virani, J-W. Lee, S. Phoha, A. Ray, Learning context-aware measurement models, in American Control Conference (ACC) (2015) pp. 4491–4496. doi:https://doi.org/10.1109/ACC.2015.7172036 Google Scholar
  70. 70.
    L. Snidaro, J. Garcia Herrero, J. Llinas, E. Blasch, Context-Enhanced Information Fusion: Boosting Real-World Performance with Domain Knowledge (Springer, Cham, 2016)CrossRefGoogle Scholar
  71. 71.
    A. Chaturvedi, J. Chi, S. Mehta, D. Dolk, SAMAS: scalable architecture for multi-resolution agent-based simulation, in International Conference Computational Science (2004)Google Scholar
  72. 72.
    N. Koyuncu, S. Lee, K.K. Vasudevan, Y-J. Son, P. Sarfare, DDDAS-based multi-fidelity simulation for online preventive maintenance scheduling in semiconductor supply chain, in Winter Simulation Conference (2007) pp. 1915–1923. doi:https://doi.org/10.1109/ WSC.2007.4419819Google Scholar
  73. 73.
    A. Boukerche, F.M. Iwasaki, R.B. Araujo, E.B. Pizzolato, Web-Based Distributed Simulations Visualization and Control with HLA and Web Services, 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications (2008) pp. 17–23. doi:https://doi.org/10.1109/DS-RT.2008.30
  74. 74.
    A.J. Aved, E. Blasch, Multi-INT query language for DDDAS designs. Procedia Comput. Sci. 51, 2518–2523 (2015)CrossRefGoogle Scholar
  75. 75.
    E. Blasch, S. Phoha, Special issue: dynamic data-driven applications systems (DDDAS) concepts in signal processing. J. Signal Proces. Syst. 24 May (2017). doi:https://doi.org/10.1007/ s11265-017-1253-7 Google Scholar
  76. 76.
    E.H. Abed, N.S. Namachchivaya, T.J. Overbye, M.A. Pai, P.W. Sauer, A. Sussman, Data driven power system operations, in International Conference Computational Science (2006)Google Scholar
  77. 77.
    N. Celik, A.E. Thanos, J.P. Saenz, DDDAMS-based dispatch control in power networks. Procedia Comput. Sci. 18, 1899–1908 (2013)CrossRefGoogle Scholar
  78. 78.
    E. Frew, B. Argrow, A. Houston, C. Weiss, J. Elston, An energy-aware airborne dynamic data-driven application system for persistent sampling and surveillance. Procedia Comput. Sci. 18, 2008–2017 (2013)CrossRefGoogle Scholar
  79. 79.
    S. Neal, R. Fujimoto, M. Hunter, Energy consumption of data driven traffic simulations, in Winter Simulation Conference (WSC) (2016) pp. 1119–1130. doi:https://doi.org/10.1109/ WSC.2016.7822170 Google Scholar
  80. 80.
    G.R. Madey, A.-L. Barabsi, N.V. Chawla, M. Gonzalez, D. Hachen, B. Lantz, A. Pawling, T. Schoenharl, G. Szabo, P. Wang, P. Yan, Enhanced situational awareness: application of DDDAS concepts to emergency and disaster management, in International Conference Computational Science (2007)Google Scholar
  81. 81.
    R.M. Fujimoto, N. Celik, H. Damgacioglu, M. Hunter, D. Jin, Y-J. Son, J. Xu, Dynamic data driven application systems for smart cities and urban infrastructures, in Winter Simulation Conference (WSC) (2016) pp. 1143–1157. doi:https://doi.org/10.1109/WSC.2016.7822172 Google Scholar
  82. 82.
    K. Sudusinghe, I. Cho, M. Van der Schaar, S.S. Bhattacharyya, Model based design environment for data-driven embedded signal processing systems. Procedia Comput. Sci. 29, 1193–1202 (2014)CrossRefGoogle Scholar
  83. 83.
    S. Chakravarthy, A. Aved, S. Shirvani, M. Annappa, E. Blasch, Adapting stream processing framework for video analysis. Procedia Comput. Sci. 51, 2648–2657 (2015)CrossRefGoogle Scholar
  84. 84.
    H. Li, K. Sudusinghe, Y. Liu, J. Yoon, M. Van Der Schaar, E. Blasch, S.S. Bhattacharyya, Dynamic, data-driven processing of multispectral video streams. IEEE Aerosp. Electron. Syst. Mag. 32, 50–57 (June 2017)CrossRefGoogle Scholar
  85. 85.
    P. Chew, N. Chrisochoides, S. Gopalsamy, G. Heber, T. Ingraffea, E. Luke, J. Neto, K. Pingali, A. Shih, B. Soni, P. Stodghill, D. Thompson, S. Vavasis, P. Wawrzynek, Computational science simulations based on web services, in International Conference Computational Science (2003)Google Scholar
  86. 86.
    O. Onolaja, R. Bahsoon, G. Theodoropoulos, Conceptual framework for dynamic trust monitoring and prediction. Procedia Comput. Sci. 1, 1241–1250 (2010)CrossRefGoogle Scholar
  87. 87.
    L. Pournajaf, L. Xiong, V. Sunderam, Dynamic data driven crowd sensing task assignment. Procedia Comput. Sci. 29, 1314–1323 (2014)CrossRefGoogle Scholar
  88. 88.
    E. Blasch, Y. Al-Nashif, S. Hariri, Static versus dynamic data information fusion analysis using DDDAS for cyber trust. Procedia Comput. Sci. 29, 1299–1313 (2014)CrossRefGoogle Scholar
  89. 89.
    Y. Badr, S. Hariri, Y. Al-Nashif, E. Blasch, Resilient and trustworthy dynamic data-driven application systems (DDDAS) Services for Crisis Management Environments. Procedia Comput. Sci. 51, 2623–2637 (2015)CrossRefGoogle Scholar
  90. 90.
    T. Chen, R. Bahsoon, G. Theodoropoulos, Dynamic qos optimization architecture for cloud-based DDDAS. Procedia Comput. Sci. 18, 1881–1890 (2013)CrossRefGoogle Scholar
  91. 91.
    R. Wu, B. Liu, Y. Chen, E. Blasch, H. Ling, G. Chen, A container-based elastic cloud architecture for Pseudo real-time exploitation of wide area motion imagery (WAMI) stream. J. Signal Proces. Syst. 88, 1–13 (2016). https://doi.org/10.1007/s11265-016-1206-6.CrossRefGoogle Scholar
  92. 92.
    S. Shekar, Dynamic data driven cloud Systems for Cloud-Hosted CPS, in IEEE International Conference on Cloud Engineering Workshop (IC2EW), (2016), pp. 195–197. https://doi.org/10.1109/IC2EW.2016.38 CrossRefGoogle Scholar
  93. 93.
    C.-S. Li, F. Darema, V. Chang, Distributed behavior model orchestration in cognitive internet of things solution. Enterp. Inf. Syst. 12, 414–434 (2017). https://doi.org/10.1080/ 17517575.2017.1355984 CrossRefGoogle Scholar
  94. 94.
    G. Seetharaman, A. Lakhotia, et al., Unmanned vehicles come of age: the DARPA grand challenge. IEEE Comput. Soc. Mag. 39(12), 26–29 (2006)CrossRefGoogle Scholar
  95. 95.
    Y. Zheng, E. Blasch, Z. Liu, Multispectral Image Fusion and Colorization SPIE, Bellingham, Washington (2018)Google Scholar
  96. 96.
    S. Ravela, K. Emanuel, D. McLaughlin, Data assimilation by field alignment. Physica. D. 230(1), 127--145 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Erik Blasch
    • 1
    Email author
  • Dennis Bernstein
    • 2
  • Murali Rangaswamy
    • 3
  1. 1.Air Force Office of Scientific Research, Air Force Research LaboratoryArlingtonUSA
  2. 2.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Air Force Research LaboratoryWPAFBUSA

Personalised recommendations