Advertisement

Doped Polyacetylene

  • Seth C. Rasmussen
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

This chapter will review the historical development of doped forms of polyacetylene that resulted in materials with increased conductivity. These highly conductive forms of polyacetylene were achieved via oxidation or reduction of the neutral polymer and such redox modified conjugated polymers are often referred to as doped materials in analogy to the doping of inorganic semiconductors such as silicon. The discussion will begin with the initial efforts of Donald Berets and Dorian Smith in 1968 and will continue up through the work of Herbert Naarmann in the 1980s.

References

  1. 1.
    Watson WH Jr, McMordie WC Jr, Lands LG (1961) Polymerization of alkynes by Ziegler-type catalyst. J Polym Sci 55:137–144CrossRefGoogle Scholar
  2. 2.
    Hatano M, Kanbara S, Okamoto S (1961) Paramagnetic and electric properties of polyacetylene. J Polym Sci 51:S26–S29CrossRefGoogle Scholar
  3. 3.
    Shirakawa H, Ito T, Ikeda S (1978) Electrical properties of polyacetylene with various cis-trans compositions. Makromol Chem 179:1565–1573CrossRefGoogle Scholar
  4. 4.
    Rasmussen SC (2017) Early history of conductive organic polymers. In: Zhang Z, Rouabhia M, Moulton SE (eds) Conductive polymers: electrical interactions in cell biology and medicine. CRC Press, Boca Raton, Chapter 1Google Scholar
  5. 5.
    McNeill R, Siudak R, Wardlaw JH, Weiss DE (1963) Electronic conduction in polymers. Aust J Chem 16:1056–1075CrossRefGoogle Scholar
  6. 6.
    Bolto BA, Weiss DE (1963) Electronic conduction in polymers. II. The electrochemical reduction of polypyrrole at controlled potential. Aust J Chem 16:1076–1089CrossRefGoogle Scholar
  7. 7.
    Bolto BA, McNeill R, Weiss DE (1963) Electronic conduction in polymers. III. Electronic Properties of polypyrrole. Aust J Chem 16:1090–1103CrossRefGoogle Scholar
  8. 8.
    Jozefowicz M, Yu LT (1966) Relations entre propriétés chimiques et électrochimiques de semi-conducteurs macromoléculaires. Rev Gen Electr 75:1008–1013Google Scholar
  9. 9.
    Yu LT, Jozefowicz M (1966) Conductivité et constitution chimique pe semi-conducteurs macromoléculaires. Rev Gen Electr 75:1014–1018Google Scholar
  10. 10.
    De Surville R, Jozefowicz M, Yu LT, Perichon J, Buvet R (1968) Electrochemical chains using protolytic organic semiconductors. Electrochim Acta 13:1451–1458CrossRefGoogle Scholar
  11. 11.
    Jozefowicz M, Yu LT, Perichon J, Buvet R (1969) Proprietes nouvelles des polymeres semiconducteurs. J Polym Sci Part C Polym Symp 22:1187–1195CrossRefGoogle Scholar
  12. 12.
    Berets DJ, Smith DS (1968) Electrical properties of linear polyacetylene. Trans Faraday Soc 64:823–828CrossRefGoogle Scholar
  13. 13.
    Morrissey S (2002) Obituaries. Chem Eng News 80(20):56CrossRefGoogle Scholar
  14. 14.
    Anon (2002) Donald Joseph Berets. Harvard Magazine, May–JuneGoogle Scholar
  15. 15.
    Berets DJ (1949) Studies on the detonation of explosive gas mixtures. Ph.D. Dissertation, Harvard UniversityGoogle Scholar
  16. 16.
    Anon (2010) Dorian Sevcik Smith Obituary. Wilmington Star-News, December 15Google Scholar
  17. 17.
    Smith DS (1958) Observations on the rare-earths: chemical and electrochemical studies in non-aqueous solvents. Ph.D. Dissertation. University of IllinoisGoogle Scholar
  18. 18.
    Illinois State Athletics Percy Hall of Fame (1990) 1950 Football. http://goredbirds.com/hof.aspx?hof=281. Accessed 1 Apr 2018
  19. 19.
    State of Illinois (1954) Proceedings of the Teachers College Board of the State of Illinois, July 1, 1953–June 30, 1954, pp 155–156Google Scholar
  20. 20.
    Shirakawa H, Ito T, Ikeda S (1973) Raman scattering and electronic spectra of poly(acetylene). Polym J 4:460–462CrossRefGoogle Scholar
  21. 21.
    Ito T, Shirakawa H, Ikeda S (1974) Simultaneous polymerization and formation of poly-acetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. J Polym Sci Polym Chem Ed 12:11–20CrossRefGoogle Scholar
  22. 22.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580Google Scholar
  23. 23.
    Chiang CK, Fincher CR Jr, Park YW, Heeger AJ, Shirakawa H, Louis BJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101CrossRefGoogle Scholar
  24. 24.
    MacDiarmid AG, Mikulski CM, Russo PJ, Saran MS, Garito AF, Heeger AJ (1975) Synthesis and structure of the polymeric metal, (SN)x, and its precursor, S2N2. J Chem Soc Chem Commun 476–477Google Scholar
  25. 25.
    Mikulski CM, Russo PJ, Saran MS, MacDiarmid AG, Garito AF, Heeger AJ (1975) Synthesis and structure of metallic polymeric sulfur nitride, (SN)x, and its precursor, disulfur dinitride, S2N2. J Am Chem Soc 97:6358–6363Google Scholar
  26. 26.
    Chiang CK, Cohen MJ, Garito AF, Heeger AJ, Mikulski CM, MacDiarmid AG (1976) Electrical conductivity of (SN)x. Solid State Commun 18:1451–1455CrossRefGoogle Scholar
  27. 27.
    Chiang CK, Cohen MJ, Peebles DL, Heeger AJ, Akhtar M, Kleppinger J, MacDiarmid AG, Milliken J, Moran MJ (1977) Transport and optical properties of polythiazyl bromides: (SNBr 0.4)x. Solid State Commun 23:607–612CrossRefGoogle Scholar
  28. 28.
    MacDiarmid AG (2001) Alan G. MacDiarmid. In: Frängsmyr T (ed) Les Prix Nobel. The Nobel prizes 2000. Nobel Foundation, Stockholm, pp 183–190Google Scholar
  29. 29.
    MacDiarmid AG (2005) Oral history interview by Cyrus Mody at University of Pennsylvania, Philadelphia, Pennsylvania. Oral History Transcript #0325. Chemical Heritage Foundation, PhiladelphiaGoogle Scholar
  30. 30.
    Hall N (2003) Twenty-five years of conducting polymers. Chem Commun 1–4Google Scholar
  31. 31.
    Hargittai B, Hargittai I (2005) Alan G. MacDiarmid. In: candid science V: conversations with famous scientists. Imperial College Press, London, pp 401–409Google Scholar
  32. 32.
    MacDiarmid AG (1949) Preparation of mono-halogen substituted compounds of sulphur nitride. Nature 164:1131–1132CrossRefGoogle Scholar
  33. 33.
    MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  34. 34.
    Halford B (2007) Alan MacDiarmid Dies at 79. Chem Eng News 85(7):16CrossRefGoogle Scholar
  35. 35.
    MacDiarmid AG (1953) Isotopic Exchange in complex cyanide—simple cyanide systems. Ph.D. Dissertation. University of Wisconsin-MadisonGoogle Scholar
  36. 36.
    MacDiarmid AG (1955) The chemistry of some new derivatives of the silyl radical. Ph.D. Dissertation. University of CambridgeGoogle Scholar
  37. 37.
    Heeger AJ (2001) Alan J. Heeger. In: Frängsmyr T (ed) Les Prix Nobel. The Nobel prizes 2000. Nobel Foundation, Stockholm, pp 139–143Google Scholar
  38. 38.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611CrossRefGoogle Scholar
  39. 39.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 23–26Google Scholar
  40. 40.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 34–39Google Scholar
  41. 41.
    Heeger AJ (2016) Never lose your nerve!. World Scientific Publishing, Singapore, p 55Google Scholar
  42. 42.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 68–71Google Scholar
  43. 43.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 77–91Google Scholar
  44. 44.
    Heeger AJ (1961) Studies on the magnetic properties of canted antiferromagnets. Ph.D. Dissertation. University of California, BerkeleyGoogle Scholar
  45. 45.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 181–191Google Scholar
  46. 46.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 132–150Google Scholar
  47. 47.
    Walatka VV, Labes MM, Perlstein JH (1973) Polysulfur nitride—a one-dimensional chain with a metallic ground state. Phys Rev Lett 31:1139–1142CrossRefGoogle Scholar
  48. 48.
    Hsu C, Labes MM (1974) Electrical conductivity of polysulfur nitride. J Chem Phys 61:4640–4645CrossRefGoogle Scholar
  49. 49.
    Labes MM, Love P, Nichols LF (1979) Polysulfur nitride-a metallic, superconducting polymer. Chem Rev 79:1–15CrossRefGoogle Scholar
  50. 50.
    Mikulski CM, Russo PJ, Saran MS, MacDiarmid AG, Garito AF, Heeger AJ (1975) Synthesis and structure of metallic polymeric sulfur nitride, (SN)x, and its precursor, disulfur dinitride, S2N2. J Am Chem Soc 97:6358–6363CrossRefGoogle Scholar
  51. 51.
    Mikulski CM, MacDiarmid AG, Garito AF, Heeger AJ (1976) Stability of polymeric sulfur nitride, (SN)x, to air, oxygen, and water vapor. Inorg Chem 15:2943–2945CrossRefGoogle Scholar
  52. 52.
    Cohen MJ, Garito AF, Heeger AJ, MacDiarmid AG, Mikulski CM, Saran MS, Kleppinger J (1976) Solid state polymerization of S2N2 to (SN)x. J Am Chem Soc 98:3844–3948CrossRefGoogle Scholar
  53. 53.
    Rasmussen SC (2016) On the origin of ‘synthetic metals’. Mater Today 19:244–245CrossRefGoogle Scholar
  54. 54.
    Rasmussen SC (2016) On the origin of “synthetic metals”: Herbert McCoy, Alfred Ubbelohde, and the development of metals from nonmetallic elements. Bull Hist Chem 41:64–73Google Scholar
  55. 55.
    Kaner RB, MacDiarmid AG (1988) Plastics that conduct electricity. Sci Am 258(2):106–111CrossRefGoogle Scholar
  56. 56.
    Hargittai I (2011) Drive and curiosity: what fuels the passion for science. Prometheus Books, Amherst, pp 173–190Google Scholar
  57. 57.
    Shirakawa H (2001) Hideki Shirakawa. In: Frängsmyr T (ed) Les Prix Nobel. The Nobel prizes 2000. Nobel Foundation, Stockholm, pp 213–216Google Scholar
  58. 58.
    Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of con-ducting polymers (Nobel lecture). Angew Chem Int Ed 40:2574–2580CrossRefGoogle Scholar
  59. 59.
    Ito T, Shirakawa H, Ikeda S (1975) Thermal cis-trans isomerization and decomposition of polyacetylene. J Polym Sci Polym Chem Ed 13:1943–1950CrossRefGoogle Scholar
  60. 60.
    Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of con-ducting polymers. In: Frängsmyr T (ed) Les Prix Nobel. The Nobel prizes 2000. Nobel Foundation, Stockholm, pp 217–226Google Scholar
  61. 61.
    Shirakawa H (2001) Nobel lecture: the discovery of polyacetylene film—the dawning of an era of conducting polymers. Rev Modern Phys 73:713–718CrossRefGoogle Scholar
  62. 62.
    Shirakawa H (2002) The discovery of polyacetylene film. The dawning of an era of con-ducting polymers. Synth Met 125:3–10CrossRefGoogle Scholar
  63. 63.
    Chiang CK, Gau SC, Fincher CR Jr, Park YW, MacDiarmid AG, Heeger AJ (1978) Polyacetylene, (CH)x: n-type and p-type doping and compensation. App Phys Lett 33:18–20CrossRefGoogle Scholar
  64. 64.
    Chiang CK, Park YW, Heeger AJ, Shirakawa H, Louis EJ, MacDiarmid AG (1978) Conducting polymers: Halogen doped polyacetylene. J Chem Phys 69:5098–5104CrossRefGoogle Scholar
  65. 65.
    Maricq MM, Waugh JS, MacDiarmid AG, Shirakawa H, Heeger AJ (1978) Carbon-13 nuclear magnetic resonance of cis- and trans-polyacetylenes. J Am Chem Soc 100:7729–7730CrossRefGoogle Scholar
  66. 66.
    Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc 100:1013–1015CrossRefGoogle Scholar
  67. 67.
    Fincher CR Jr, Peebles DL, Heeger AJ, Druy MA, Matsumura Y, MacDiarmid AG, Shirakawa H, Ikeda S (1978) Anisotropic optical properties of pure and doped polyacetylene. Solid State Commun 27:489–494CrossRefGoogle Scholar
  68. 68.
    Park YW, Druy MA, Chiang CK, MacDiarmid AG, Heeger AJ, Shirakawa H, Ikeda S (1979) Anisotropic electrical conductivity of partially oriented polyacetylene. J Polym Sci Polym Lett Ed 17:195–201CrossRefGoogle Scholar
  69. 69.
    Duke CB, Paton A, Salaneck WR, Thomas HR, Plummer EW, Heeger AJ, MacDiarmid AG (1978) Electronic structure of polyenes and polyacetylene. Chem Phys Lett 59:146–150CrossRefGoogle Scholar
  70. 70.
    Goldberg IB, Crowe HR, Newman PR, Heeger AJ, MacDiarmid AG (1979) Electron spin resonance of polyacetylene and AsF5-doped polyacetylene. J Chem Phys 70:1132–1136CrossRefGoogle Scholar
  71. 71.
    Nigrey PJ, MacDiarmid AG, Heeger AJ (1979) Electrochemistry of polyacetylene, (CH)x: electrochemical doping of (CH)x films to the metallic state. J Chem Soc Chem Commun 594–595Google Scholar
  72. 72.
    Chiang CK, Heeger AJ, Macdiarmid AG (1979) Synthesis, structure, and electrical properties of doped polyacetylene. Ber Bunsen-Ges 78983:407–417CrossRefGoogle Scholar
  73. 73.
    Salaneck WR, Thomas HR, Duke CB, Paton A, Plummer EW, Heeger AJ, MacDiarmid AG (1979) J Chem Phys 71:2044–2050Google Scholar
  74. 74.
    Wnek GE, Chien JCW, Karasz FE, Druy MA, Park YW, MacDiarmid AG, Heeger AJ (1979) Variable-density conducting polymers: conductivity and thermopower studies of a new form of polyacetylene: (CH)x. J Polym Sci Polym Lett Ed 17:779–786CrossRefGoogle Scholar
  75. 75.
    Weinberger BR, Kaufer J, Heeger AJ, Pron A, MacDiarmid AG (1979) Magnetic susceptibility of doped polyacetylene. Phys Rev B 20:223–230CrossRefGoogle Scholar
  76. 76.
    Fincher CE Jr, Ozaki M, Tanaka M, Peebles D, Lauchlan L, Heeger AJ (1979) Electronic structure of polyacetylene: optical and infrared studies of undoped semiconducting (CH)x and heavily doped metallic (CH)x. Phys Rev B 20:1589–1601CrossRefGoogle Scholar
  77. 77.
    Karasz FE, Chien JCW, Galkiewicz R, Wnek GE, Heeger AJ, MacDiarmid AG (1979) Nascent morphology of polyacetylene. Nature 282:286–288CrossRefGoogle Scholar
  78. 78.
    Theophilou N, Aznar R, Munardi A, Sledz J, Schue F, Naarnann H (1986) E.S.R. Study of the Ti(OBu)4 catalyst mixture in silicone oil with regard to the synthesis of homogeneous and highly conducting (CH)x. Synth Metals 16:337–342CrossRefGoogle Scholar
  79. 79.
    Naarmann H (1990) The development of electrically conducting polymers. Adv Mater 2:345–348CrossRefGoogle Scholar
  80. 80.
    Naarmann H (1959) On the identification of constituents of the poison of some bird spiders. Ph.D. Dissertation. Julius-Maximilians-Universität WürzburgGoogle Scholar
  81. 81.
    Munardi A, Aznar R, Theophilou N, Sledz J, Schue F, Naarnann H (1987) Morphology of polyacetylene produced in the presence of the soluble catalyst Ti(OnBu)4-n-BuLi. Eur Polym J 23:11–14CrossRefGoogle Scholar
  82. 82.
    Munardi A, Theophilou N, Aznar R, Sledz J, Schue F, Naarnann H (1987) Polymerization of acetylene with Ti(OC4H9)4/butyllithium as catalyst system and silicone oil as reaction medium. Makromol Chem 188:395–399CrossRefGoogle Scholar
  83. 83.
    Theophilou N, Aznar R, Munardi A, Sledz J, Schue F, Naarnann H (1987) Polymerization of acetylene with new catalytic systems and optimization of the properties of the polymers. J Macromol Sci Chem A24:797–812CrossRefGoogle Scholar
  84. 84.
    Naarmann H, Theophilou N (1987) New process for the production of metal-like, stable polyacetylene. Synth Metals 22:1–8CrossRefGoogle Scholar
  85. 85.
    Basescu N, Liu ZX, Moses D, Heeger AJ, Naarmann H, Theophilou N (1987) High electrical conductivity in doped polyacetylene. Nature 327:403–405CrossRefGoogle Scholar
  86. 86.
    Schimmel T, Rieβ W, Gmeiner J, Denninger G, Schwoerer M, Naarmann H, Theophilou N (1988) DC-Conductivity on a new type of highly conducting polyacetylene, N-(CH)x. Solid State Commun 65:1311–1315CrossRefGoogle Scholar
  87. 87.
    Naarmann H, Theophilou N (1989) Influences of the catalyst system on the morphology, structure and conductivity of a new type of polyacetylene. Makromol Chem Macromol Symp 24:115–128CrossRefGoogle Scholar
  88. 88.
    Schimmel T, Denninger G, Riess W, Voit J, Schwoerer M, Schoepe W, Naarmann H (1989) High-σ polyacetylene: DC conductivity between 14 mK and 300 K. Synth Metals 28:D11–D18CrossRefGoogle Scholar
  89. 89.
    Winter H, Sachs G, Dormann E, Cosmo R, Naarmann H (1990) Magnetic properties of spin-labelled polyacetylene. Synth Metals 36:353–365CrossRefGoogle Scholar
  90. 90.
    Schimmel Th, Schwoerer M, Naarmann H (1990) Mechanisms limiting the D.C. conductivity of high-conductivity polyacetylene. Synth Metals 37:1–6CrossRefGoogle Scholar
  91. 91.
    Schimmel T, Glaser M, Schwoerer M, Naarmann H (1991) Conductivity barriers and transmission electron microscopy on highly conducting polyacetylene. Synth Metels 41–43:19–25CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoUSA

Personalised recommendations