Advertisement

Lignocellulolytic Enzymes from Thermophiles

  • Vikas Sharma
  • D. Vasanth
Chapter

Abstract

Thermophilic microorganisms are considered as the important source for the production of novel enzymes for various industrial applications including degradation of lignocellulosic biomass. Bioprocessing of lignocellulosic biomass has gained significant attention for the synthesis of bio-based products by focusing on its three major components, i.e. cellulose, hemicellulose and lignin. Thermophiles (optimally grown at 60 ± 80 ℃) obtained from hot springs are of great interest for providing novel thermostable enzymes that can catalyze under harsh conditions comparable to those existing in various industrial processes. Metagenomic studies helps in identifying lignocellulolytic enzymes with novel properties from the culturable and unculturable micro-organisms. In this chapter, the biotechnological significance of thermostable lignocelluloses degrading enzymes will be briefly discussed particularly cellulases, xylanases and laccases.

Keywords

Extremophiles Lignocellulosic biomass Hotsprings Thermophiles Cellulases Xylanases Laccases 

References

  1. Acharya S, Chaudhary A (2011) Effect of nutritional and environmental factors on cellulases activity by thermophilic bacteria isolated from hot spring. J Sci Ind Res 70:142–148Google Scholar
  2. Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, Mandic-Mulec I (2017) The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol 101(15):6261–6276CrossRefPubMedGoogle Scholar
  3. Azadian F, Badoei-dalfard A, Namaki-Shoushtari A, Karami Z, Hassanshahian M (2017) Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. J Genet Eng Biotechnol.  https://doi.org/10.1016/j.jgeb.2016.12.005CrossRefGoogle Scholar
  4. Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B (2010) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37(2):187–194CrossRefPubMedGoogle Scholar
  5. Baltaci MO, Genc B, Arslan S, Adiguzel G, Adiguzel A (2017) Isolation and characterization of thermophilic bacteria from geothermal areas in Turkey and preliminary research on biotechnologically important enzyme production. Geomicrobiol J 34(1):53–62CrossRefGoogle Scholar
  6. Barabote RD, Parales JV, Guo Y-Y, Labavitch JM, Parales RE, Berry AM (2010) Xyn10A, a thermostable endoxylanase from Acidothermus cellulolyticus 11B. Appl Environ Microbiol 76(21):7363–7366CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bataillon M, Cardinali A-PN, Castillon N, Duchiron F (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb Technol 26(2):187–192Google Scholar
  8. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  9. Bhalla A, Bischoff KM, Sani RK (2015) Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WsUcF1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol 3(84):1–8Google Scholar
  10. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19(3):210–217CrossRefPubMedGoogle Scholar
  11. Bozoglu C, Adiguzel A, Nadaroglu H, Yanmis D, Gulluce M (2013) Purification and characterization of laccase from newly isolated thermophilic Brevibacillus sp. (Z1) and its applications in removal of textile dyes. Res J Biotechnol 8(9):56–66Google Scholar
  12. Cavello I, Urbieta M, Segretin A, Giaveno A, Cavalitto S, Donati E (2017) Assessment of keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina. Geomicrobiol J 35:156–165CrossRefGoogle Scholar
  13. Cerda A, Mejías L, Gea T, Sánchez A (2017) Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: the consistency of the process and the microbial communities involved. Bioresour Technol 243:1059–1068CrossRefPubMedGoogle Scholar
  14. Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):1–20CrossRefGoogle Scholar
  15. Demirjian DC, Morı́s-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151CrossRefPubMedGoogle Scholar
  16. Ellis JT, Magnuson TS (2012) Thermostable and alkalistable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. ISRN Microbiol 2012:1–8Google Scholar
  17. Franzén CJ, Aulitto M, Contursi P, Fusco S, Bartolucci S (2017) Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol Biofuels 10(1):1–15CrossRefGoogle Scholar
  18. Garrido-Cardenas JA, Manzano-Agugliaro F (2017) The metagenomics worldwide research. Curr Genet 63:819–829CrossRefPubMedGoogle Scholar
  19. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467CrossRefPubMedGoogle Scholar
  20. Hildén K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31(8):1117–1128CrossRefPubMedGoogle Scholar
  21. Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62(8):3047–3049Google Scholar
  22. Hung K-S, Liu S-M, Tzou W-S, Lin F-P, Pan C-L, Fang T-Y, Sun K-H, Tang S-J (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46(6):1257–1263CrossRefGoogle Scholar
  23. Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA (2017) Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring. Appl Biochem Biotechnol 182:1390–1402CrossRefPubMedGoogle Scholar
  24. Kuancha C, Sukklang S, Detvisitsakun C, Chanton S, Apiraksakorn J (2017) Fermentable sugars production from lignocellulosic materials hydrolysis by thermophilic enzymes from Bacillus subtilis J12. Energy Procedia 138:151–156CrossRefGoogle Scholar
  25. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155(4):283–289CrossRefPubMedGoogle Scholar
  26. Li W, Zhang W-W, Yang M-M, Chen Y-L (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201CrossRefPubMedGoogle Scholar
  27. Liang C, Xue Y, Fioroni M, Rodríguez-Ropero F, Zhou C, Schwaneberg U, Ma Y (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89(2):315–326CrossRefPubMedGoogle Scholar
  28. Margaritis A, Merchant RF, Yaguchi M (1986) Thermostable cellulases from thermophilic microorganisms. Crit Rev Biotechnol 4(3):327–367CrossRefGoogle Scholar
  29. Muthukumarasamy NP, Murugan S (2014) Production, Purification and application of bacterial laccase: a review. Biotechnology 13(5):196–205CrossRefGoogle Scholar
  30. Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L (2012) Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22(4):462–469CrossRefPubMedGoogle Scholar
  31. Potprommanee L, Wang X-Q, Han Y-J, Nyobe D, Peng Y-P, Huang Q, Liu J-y, Liao Y-L, Chang K-L (2017) Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS ONE 12(4):e0175004Google Scholar
  32. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806CrossRefPubMedGoogle Scholar
  33. Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S (2016) A strategy for soluble overexpression and biochemical characterization of halo-thermotolerant Bacillus laccase in modified E. coli. J Biotechnol 227:56–63CrossRefPubMedGoogle Scholar
  34. Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK (2017) Metagenomic analysis of hot springs in Central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7(2123):1–17Google Scholar
  35. Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277(2):413–417CrossRefPubMedPubMedCentralGoogle Scholar
  36. Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M (2017) Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol Biofuels 10(1):1–18CrossRefGoogle Scholar
  37. Siroosi M, Amoozegar MA, Khajeh K (2016) Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. J Mol Catal B Enzym 134:89–97CrossRefGoogle Scholar
  38. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606CrossRefPubMedGoogle Scholar
  39. Sriharti Agustina W, Ratnawati L, Rahman T, Salim T (2017) Utilizing thermophilic microbe in lignocelluloses based bioethanol production. AIP Conf Proc 1803:0200131–0200137Google Scholar
  40. Sunna A, Prowe SG, Stoffregen T, Antranikian G (1997) Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148(2):209–216CrossRefPubMedGoogle Scholar
  41. Thomas T, Gilbert J, Meyer F (2012) Metagenomics-a guide from sampling to data analysis. Microb Inform Exp 2012:1–12Google Scholar
  42. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:1–23CrossRefGoogle Scholar
  43. Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218CrossRefPubMedGoogle Scholar
  44. Verma A, Shirkot P (2014) Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of textile dyes. Scholars Acad J Biosci 2(8):479–485Google Scholar
  45. Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Biofuels 108:121–145CrossRefGoogle Scholar
  46. Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:1–12CrossRefGoogle Scholar
  47. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299CrossRefPubMedGoogle Scholar
  48. Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol 47(6):283–290CrossRefGoogle Scholar
  49. Wongwilaiwalin S, Laothanachareon T, Mhuantong W, Tangphatsornruang S, Eurwilaichitr L, Igarashi Y, Champreda V (2013) Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appl Microbiol Biotechnol 97(20):8941–8954CrossRefPubMedGoogle Scholar
  50. Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72(6):1210–1216CrossRefPubMedGoogle Scholar
  51. Xia Y, Ju F, Fang HH, Zhang T (2013) Mining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS ONE 8(1):e53779CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yanmis D, Adiguzel A, Nadaroglu H, Gulluce M, Demir N (2016) Purification and characterization of laccase from thermophilic Anoxybacillus gonensis P39 and its application of removal Textile dyes. Rom Biotechnol Lett 21(3):11485–11496Google Scholar
  53. Zhang F, Hu S-N, Chen J-J, Lin L-B, Wei Y-L, Tang S-K, Xu L-H, Li W-J (2012) Purification and partial characterisation of a thermostable xylanase from salt-tolerant Thermobifida halotolerans YIM 90462 T. Process Biochem 47(2):225–228CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyNational Institute of TechnologyRaipurIndia

Personalised recommendations