Advertisement

Microbially Originated Polyhydroxyalkanoate (PHA) Biopolymers: An Insight into the Molecular Mechanism and Biogenesis of PHA Granules

  • Akhilesh Kumar Singh
  • Laxuman Sharma
  • Janmejai Kumar Srivastava
  • Nirupama Mallick
  • Mohammad Israil Ansari
Chapter

Abstract

Microorganisms especially bacteria and cyanobacteria have the ability to synthesize polyhydroxyalkanoates (PHAs) granules as carbon and energy storage compounds within their cells. Owing to eco-friendly, biodegradability, modifiable mechanical properties, non-toxicity, biocompatibility, hydrophobicity, cellular growth support, piezoelectricity, attachment without carcinogenic effects, optical purity and desired surface modifications, the PHAs have received substantial attention towards research as well as commercial ventures and comparable to non-biodegradable conventional plastics presently in use. Microbial PHA biosynthetic pathways are grouped into four types, where PHA synthases are the main enzymes. The PHA synthases exploit the hydroxyacyl-CoAs as substrates and catalyze the covalent bond formation among the hydroxyl group of one along with the carboxyl group of other hydroxyalkanoate that result into the formation of PHAs. Depending on the specificity of substrate as well as components of subunit, PHA synthases are grouped into four types, i.e., class I synthesizing Short-Chain-Length (SCL) PHAs (represented by the bacterium Cupriavidus necator), class II synthesizing Medium-Chain-Length (MCL) PHAs (represented by the bacterium Pseudomonas putida), class III (represented by bacterial species such as Allochromatium vinosum), and class IV PHA synthases (so far represented only by Bacillus sp., B. megaterium). Interestingly, these PHA synthases have a preserved cysteine residue as a catalytic active site to which the resulting PHA chain is linked through covalent bond. Overall, this chapter gives an overview on the structure and genes of PHA synthases including PHA biosynthetic routes, mechanism of PHAs polymerization together with biogenesis of PHA granules and phasins as major PHA granule-associated proteins.

Keywords

Biocompatibility Biodegradability PHAs Phasins PHA synthases Piezoelectricity Polyhydroxyalkanoates PHA biosynthetic pathways PHA biogenesis 

References

  1. Abe C, Taima Y, Nakamura Y, Doi Y (1990) New bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-fluoroalkanoates produced by Pseudomonas oleovorans. Polym Commun 31:404–406Google Scholar
  2. Aeschelmann F, Carus M, Baltus W (2015) Bio-based building blocks and polymers in the world, capacities, production and applications: status quo and trends towards 2020 (www.biobased.eu/markets)
  3. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138PubMedCrossRefGoogle Scholar
  4. Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11:19–27CrossRefGoogle Scholar
  5. Alves LP, Teixeira CS, Tirapelle EF, Donatti L, Tadra-Sfeir MZ, Steffens MB, de Souza EM, de Oliveira Pedrosa F, Chubatsu LS, Müller-Santos M (2016) Backup expression of the PhaP2 phasin compensates for phaP1 deletion in Herbaspirillum seropedicae, maintaining fitness and PHB accumulation. Front Microbiol 7:739PubMedPubMedCentralGoogle Scholar
  6. Amara AA, Rehm BHA (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 374:413–421PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  8. Ansari S, Yasin D, Fatma T (2016) Key insights of natural bioplastic polyhyroxybutyrate (PHB) synthesis in cyanobacteria. Am J PharmTech ResGoogle Scholar
  9. Antonio RV, Steinbüchel A, Rehm BH (2000) Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett 182:111–117PubMedCrossRefGoogle Scholar
  10. Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria- the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42PubMedCrossRefGoogle Scholar
  11. Ashby RD, Solaiman DKY, Foglia TA (2002) The synthesis of short and medium chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans. J Ind Microbiol Biotechnol 28:147–153PubMedCrossRefGoogle Scholar
  12. Backstrom BT, Brockelbank JA, Rehm BH (2007) Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol 7:3.  https://doi.org/10.1186/1472-6750-7-3CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ballard DGH, Holmes PA, Senior PJ (1987) Formation of polymers of β-hydroxybutyric acid in bacterial cells and a comparison of the morphology of growth with the formation of polyethylene in the solid state. In: Fontanille M, Guyot A (eds) Recent advances in mechanistic and synthetic aspects of polymerization. Reidel, Kluwer, pp 293–314CrossRefGoogle Scholar
  14. Beeby M, Cho M, Stubbe J, Jensen GJ (2012) Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha. J Bacteriol 194:1092–1099PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bernard M (2014) Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. Univ Saskatchewan Undergraduate Res J 1:1–14Google Scholar
  16. Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512CrossRefGoogle Scholar
  17. Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85CrossRefGoogle Scholar
  18. Bhati R, Mallick N (2016) Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. J Appl Phycol 28:161–168CrossRefGoogle Scholar
  19. Bhati R, Samantaray S, Sharma L, Mallick N (2010) Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol J 5:1181–1185PubMedCrossRefGoogle Scholar
  20. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225PubMedCrossRefGoogle Scholar
  21. Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783PubMedCrossRefGoogle Scholar
  22. Braunegg G, Gilles L, Klaus F (1998) Polyhydroxyalkanoates biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161PubMedCrossRefGoogle Scholar
  23. Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) Granules have no phospholipids. Sci Rep 6:26612PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind 1:53–60Google Scholar
  25. Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ (2010) Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464PubMedPubMedCentralCrossRefGoogle Scholar
  26. Byrom D (1992) Production of poly-β-hydroxybutyrate and poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250Google Scholar
  27. Byrom D (1994) Polyhydroxyalkanoate. In: Mobley DP (ed) Plastics from microbes: microbial synthesis of polymers and polymer precursors. Hanser, Munich, pp 5–33Google Scholar
  28. Cai S, Cai L, Liu H, Liu X, Han J, Zhou J, Xiang H (2012) Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl Environ Microbiol 78:1946–1952PubMedPubMedCentralCrossRefGoogle Scholar
  29. Campbell J, Stevens SE Jr, Bankwill DL (1982) Accumulation of poly-β-hydroxybutyrate in Spirulina platensis. J Bacteriol 149:361–366Google Scholar
  30. Carr NG (1966) The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii. Biochem Biophys Acta 120:308–310PubMedGoogle Scholar
  31. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Biores Technol 100:5996–6009CrossRefGoogle Scholar
  32. Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Biores Technol. https://doi.org/10.1016/j.biortech.2018.06.004 (in press)
  33. Chang SI, Hammes GG (1990) Structure and mechanism of action of a multifunctional enzyme: fatty acid synthase. Acc Chem Res 23:363–369CrossRefGoogle Scholar
  34. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446PubMedCrossRefGoogle Scholar
  35. Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Microbiology monographs. Springer, Berlin, pp 17–38Google Scholar
  36. Chen GQ, Wu Q (2005a) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599PubMedCrossRefGoogle Scholar
  37. Chen GQ, Wu Q (2005b) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578PubMedCrossRefGoogle Scholar
  38. Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55PubMedCrossRefGoogle Scholar
  39. Chen SY, Chien YW, Chao YP (2014) In vivo immobilization of d-hydantoinase in Escherichia coli. J Biosci Bioeng 118:78–81PubMedCrossRefGoogle Scholar
  40. Cho M, Brigham CJ, Sinskey AJ, Stubbe J (2012) Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo. Biochemistry 51:2276–2288PubMedPubMedCentralCrossRefGoogle Scholar
  41. Choi MH, Yoon SC (1994) Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl Environ Microbiol 60:3245–3254PubMedPubMedCentralGoogle Scholar
  42. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21CrossRefGoogle Scholar
  43. Curley JM, Hazer B, Lenz RW (1996) Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29:1762–1766CrossRefGoogle Scholar
  44. De Koning GJM, Maxwell IA (1993) Biosynthesis of poly-(R)-3-hydroxyalkanoate: an emulsion polymerization. J Environ Polym Degrad 1:223–226CrossRefGoogle Scholar
  45. de Koning GJM, van Bilsen HMM, Lemstra PJ, Hazenberg W, Witholt B, Preusting H, van der Galien JG, Schirmer A, Jendrossek D (1994) A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090–2097CrossRefGoogle Scholar
  46. De Morais MG, Stillings C, Roland D, Rudisile M, Pranke P, Costa JAV, Wendorff J (2015) Extraction of poly(3-hydroxybutyrate) from Spirulina LEB 18 for developing nanofibers. Polímeros 25:161–167CrossRefGoogle Scholar
  47. Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64:177–186PubMedCrossRefGoogle Scholar
  48. DiGregorio BE (2009) Biobased performance bioplastic. Mirel Chem Biol 16:1–2PubMedCrossRefGoogle Scholar
  49. Doi Y (1990) Microbial polyesters. VCH Publishers, New YorkGoogle Scholar
  50. Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707Google Scholar
  51. Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635Google Scholar
  52. Doi Y, Segawa A, Kunioka M (1989) Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced from gamma-butyrolactone and butyric acid by Alcaligenes eutrophus. Polym Commun 30:169–171Google Scholar
  53. Doi Y, Segawa A, Kunioka M (1990) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111Google Scholar
  54. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828Google Scholar
  55. Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31:8921–8930PubMedCrossRefGoogle Scholar
  56. Doug S (2010) Bioplastics: technologies and global markets. BCC research reports PLS050AGoogle Scholar
  57. Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156CrossRefGoogle Scholar
  58. Eggers J, Steinbuchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J Bacteriol 195:3213–3223PubMedPubMedCentralCrossRefGoogle Scholar
  59. Eggink G, van der Wal H, Huijberts GNM, de Waard P (1993) Oleic acids as a substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crops Prod 1:157–163CrossRefGoogle Scholar
  60. Eggink G, de Waard P, Huijberts GNM (1995) Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol (Suppl) 41:14–21CrossRefGoogle Scholar
  61. Ellar D, Lundgren DG, Okamura K, Marchessault RH (1968) Morphology of poly-beta-hydroxybutyrate granules. J Mol Biol 35:489–502Google Scholar
  62. Fritzsche K, Lenz RW, Fuller R (1990a) An unusual bacterial polyester with a phenyl pendant group. Macromol Chem 191:1957–1965CrossRefGoogle Scholar
  63. Fritzsche K, Lenz RW, Fuller RC (1990b) Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol 12:85–91PubMedCrossRefGoogle Scholar
  64. Fritzsche K, Lenz WR, Fuller RC (1990c) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101PubMedCrossRefGoogle Scholar
  65. Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336Google Scholar
  66. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers. 1. Peroxide crosslinking. Polymer 35:4358–4367CrossRefGoogle Scholar
  67. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers. 2. Sulfur vulcanization. Polymer 35:4368–4375CrossRefGoogle Scholar
  68. Gao X, Yuan XX, Shi ZY, Shen XW, Chen JC, Wu Q, Chen GQ (2012) Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene. Microb Cell Fact 11:130PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[(R)-(2)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci 92:6279–6283PubMedCrossRefGoogle Scholar
  70. Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of the of PHB granules. J Bacteriol 175:5289–5293Google Scholar
  71. Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320Google Scholar
  72. Global Polyhydroxyalkanoate (PHA) Market (Sources, Applications, Geography)—Size, Share, Global Trends, Company Profiles, Demand, Insights, Analysis, Research, Report, Opportunities, Segmentation and Forecast, 2012–2020. Retrieved from http://www.reportsandintelligence.com/polyhydroxyalkanoate-market
  73. Global Trends and Forecasts to 2018—Polyhydroxyalkanoate (PHA) Market, By Application (Packaging, Food Services, Bio-medical, Agriculture) & Raw Material. Retrieved from http://www.marketsandmarkets.com
  74. Gómez Cardozo JR, Mora Martínez AL, Yepes Pérez M, Correa Londoño GA (2016) Production and characterization of polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. Int J Polym Sci 2016:6541718.  https://doi.org/10.1155/2016/6541718CrossRefGoogle Scholar
  75. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201–207PubMedCrossRefGoogle Scholar
  76. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669PubMedCrossRefGoogle Scholar
  77. Griebel RJ, Merrick JM (1971) Metabolism of poly-β-hydroxybutyrate: effect of mild alkaline extraction on native poly-β-hydroxybutyrate granules. J Bacteriol 108:782–789PubMedPubMedCentralGoogle Scholar
  78. Griebel R, Smith Z, Merrick JM (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7:3676–3681PubMedCrossRefGoogle Scholar
  79. Haase S, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24:157–162CrossRefGoogle Scholar
  80. Hai T, Hein S, Steinbüchel A (2001) Multiple evidence for widespread and general occurrence of type-III PHA synthases in cyanobacteria and molecular characterization of the PHA synthases from two thermophilic cyanobacteria: Chlorogloeopsis fritschii PCC 6912 and Synechococcus sp. strain MA19. Microbiology 147:3047–3060PubMedCrossRefGoogle Scholar
  81. Hängii UJ (1990) Pilot scale production of PHB with Alcaligens latus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, pp 60–65Google Scholar
  82. Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3:101–118PubMedPubMedCentralCrossRefGoogle Scholar
  83. Haywood GW, Anderson AJ, Dawes AE (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6CrossRefGoogle Scholar
  84. Hazenberg W, Witholt B (1997) Efficient production of medium chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: economic considerations. Appl Microbiol Biotechnol 48:588–596CrossRefGoogle Scholar
  85. Hazer B, Lenz RW, Fuller RC (1994) Biosynthesis of methylbranched poly(β-hydroxyalkanoate)s by Pseudomonas oleovorans. Macromolecules 27:45–49CrossRefGoogle Scholar
  86. Hein S, Tran H, Steinbüchel A (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170:162–170PubMedCrossRefGoogle Scholar
  87. Hoffmann N, Rehm BH (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7PubMedCrossRefGoogle Scholar
  88. Hoffmann N, Rehm BH (2005) Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol Lett 27:279–282PubMedCrossRefGoogle Scholar
  89. Huijberts GNM, de Rijk TC, de Ward P, Eggink G (1995) 13C nuclear magnetic resonance study of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666Google Scholar
  90. Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954PubMedPubMedCentralGoogle Scholar
  91. Huisman GW, Wonink E, Meima R, Katzemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198PubMedGoogle Scholar
  92. Huong KH, Shantini K, Sharmini R, Amirul AA (2017) Exploring the potential of 1-pentanol and oleic acid for optimizing the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus sp. USMAA1020. Arab J Sci Eng 42:2313–2320CrossRefGoogle Scholar
  93. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373PubMedCrossRefGoogle Scholar
  95. Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J (2000) Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39:3927–3936PubMedCrossRefGoogle Scholar
  96. Jia Y, Yuan W, Wodzinska J, Park J, Sinskey AJ, Stubbe J (2001) Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry 40:1011–1019PubMedCrossRefGoogle Scholar
  97. Jia K, Cao R, Hua DH, Li P (2016) Study of class I and class III polyhydroxyalkanoate (PHA) synthases with substrates containing a modified side chain. Biomacromol 17:1477–1485CrossRefGoogle Scholar
  98. Jossek R, Reichelt R, Steinbuchel A (1998) In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol 49:258–266PubMedCrossRefGoogle Scholar
  99. Jurasek L, Marchessault RH (2004) Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 64:611–617PubMedCrossRefGoogle Scholar
  100. Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stabil 83:79–86Google Scholar
  101. Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444PubMedCrossRefGoogle Scholar
  102. Kato M, Bao HJ, Kang C-K, Fukui T, Doi Y (1996) Production of novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370Google Scholar
  103. Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329Google Scholar
  104. Kim YB, Lenz RW, Fuller RC (1991) Preparation and characterization of poly(β-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 24:5256–5360CrossRefGoogle Scholar
  105. Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857CrossRefGoogle Scholar
  106. Kim OY, Gross RA, Rutherford DR (1995) Bioengineering of poly(β-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can J Microbiol 41:32–43CrossRefGoogle Scholar
  107. Koller M, Maršálek L (2015) Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis?. Curr Biotechnol 4:464–480CrossRefGoogle Scholar
  108. Kuchta K, Chi L, Fuchs H, Pötter M, Steinbüchel A (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromol 8:657–662CrossRefGoogle Scholar
  109. Kumar A, Srivastava JK, Mallick N, Singh AK (2015) Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects. Recent Pat Biotechnol 9:4–21PubMedCrossRefGoogle Scholar
  110. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150CrossRefGoogle Scholar
  111. Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–357PubMedCrossRefGoogle Scholar
  112. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly(R)-3-hydroxyalkanoates and poly(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932PubMedPubMedCentralGoogle Scholar
  113. Lama L, Nicolaus B, Calandrelli V, Maria MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C. Phytochemistry 42:655–659CrossRefGoogle Scholar
  114. Langenbach S, Rehm BH, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309PubMedCrossRefPubMedCentralGoogle Scholar
  115. Lee SY (1995) Bacterial polydroxyalkanoates. Biotechnol Bioeng 49:1–14CrossRefGoogle Scholar
  116. Lee SY, Park SJ (2002) Biosynthesis and fermentative production of SCL-MCL-PHAs. In: Doi Y, Steinbüchel A (eds) Biopolymers Vol. 3a. Wiley/VCH, Weinheim, pp 317–336Google Scholar
  117. Lee SY, Choi J, Wong HW (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  118. Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947PubMedCrossRefPubMedCentralGoogle Scholar
  119. Li QA, Chen QA, Li MJ, Wang FS, Qi QS (2011) Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli. New Biotech 28:92–95CrossRefGoogle Scholar
  120. Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209:135–150PubMedCrossRefGoogle Scholar
  121. Liebergesell M, Mayer F, Steinbüchel A (1993) Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl Microbiol Biotechnol 40:292–300CrossRefGoogle Scholar
  122. Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 78:227–232Google Scholar
  123. Liebergesell M, Sonomoto K, Madkour M, Mayer F, Steinbuchel A (1994) Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem 226:71–80PubMedCrossRefGoogle Scholar
  124. Liebergesell M, Rahalkar S, Steinbüchel A (2000) Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol 54:186–194PubMedCrossRefGoogle Scholar
  125. Liu KL, Goh SH, Li J (2008) Controlled synthesis and characterizations of amphiphilic poly[(R, S)3-hydroxybutyrate]-poly(ethyleneglycol)-poly[(R, S)-3hydroxybutyrate] triblock copolymers. Polymer 49:732–741CrossRefGoogle Scholar
  126. Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248CrossRefGoogle Scholar
  127. Lundgren DG, Pfister RM, Merrick JM (1964) Structure of poly(β-hydroxybutyric acid) granules. J Gen Microbiol 34:441–446PubMedCrossRefGoogle Scholar
  128. Luo R, Chen J, Zhang L, Chen G (2006) Polyhydroxyalkanoate copolyesters produced by Ralstonia eutropha PHB−4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Biochem Engg J 32:218–225CrossRefGoogle Scholar
  129. Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci USA 89:839–842PubMedCrossRefGoogle Scholar
  130. Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol 25:43–53PubMedCrossRefGoogle Scholar
  131. Madison LL, Huisiman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  132. Maestro B, Sanz JM (2017) Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microb Biotechnol (in press).  https://doi.org/10.1111/1751-7915.12718CrossRefGoogle Scholar
  133. Mallick N, Sharma L, Singh AK (2007) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum: effects of metabolic inhibitors. J Plant Physiol 164:312–317PubMedCrossRefGoogle Scholar
  134. Martin DP, Peoples OP, Williams SF, Zhong LH (1999) Nutritional and therapeutic uses of 3-hydroxyalkanoate oligomers. US Patent Appl 359086Google Scholar
  135. Masamune S, Walsh CT, Sinskey AJ, Peoples OP (1989) Poly-(R)3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl Chem 61:303–312Google Scholar
  136. Massieu L, Haces ML, Montiel T, Hernández-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378PubMedCrossRefPubMedCentralGoogle Scholar
  137. Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1:17–22Google Scholar
  138. McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181:585–592Google Scholar
  139. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243Google Scholar
  140. Mendhulkar VD, Shetye LA (2017) Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind Biotechnol 13:85–93CrossRefGoogle Scholar
  141. Merrick JM (1965) Effect of polymyxin B, tyrocidine, gramicidin D, and other antibiotics on the enzymatic hydrolysis of poly-beta-hydroxybutyrate. J Bacteriol 90:965–969Google Scholar
  142. Merrick JM, Doudoroff M (1964) Depolymerization of poly-beta-hydroxybutyrate by an intracellular enzyme system. J Bacteriol 88:60–71PubMedPubMedCentralGoogle Scholar
  143. Merrick JM, Lundgren DG, Pfister RM (1965) Morphological changes in poly-beta-hydroxybutyrate granules associated with decreased susceptibility to enzymatic hydrolysis. J Bacteriol 89:234–239PubMedPubMedCentralGoogle Scholar
  144. Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioengg 82:512–514CrossRefGoogle Scholar
  145. Miyake M, Kataoka K, Shirai M, Asada Y (1997) Control of poly-β-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J Bacteriol 179:5009–5013PubMedPubMedCentralCrossRefGoogle Scholar
  146. Moldes C, Garcia P, Garcia JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212PubMedPubMedCentralCrossRefGoogle Scholar
  147. Moldes C, Farinos GP, de Eugenio LI, Garcia P, Garcia JL, Ortego F, Hernández-Crespo P, Castañera P, Prieto MA (2006) New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Appl Microbiol Biotechnol 72:88–93PubMedCrossRefPubMedCentralGoogle Scholar
  148. Moskowitz GJ, Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate II. Enzymatic synthesis of D(-)-β-hydroxybutyryl coenzyme-A by an enoylhydrases from Rhodospirillum rubrum. Biochemistry 8:2748–2755PubMedCrossRefPubMedCentralGoogle Scholar
  149. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282PubMedCrossRefPubMedCentralGoogle Scholar
  150. Müh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J (1999) PHA Synthase from Chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochemistry 38:826–837PubMedCrossRefPubMedCentralGoogle Scholar
  151. Muller S, Bley T, Babel W (1999) Adaptive responses of Ralstonia eutropha to feast and famine conditions analysed by flow cytometry. J Biotechnol 75:81–97PubMedCrossRefPubMedCentralGoogle Scholar
  152. Neumann L, Spinozzi F, Sinibaldi R, Rustichelli F, Pötter M, Steinbüchel A (2008) Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3hydroxybutyrate) granules. J Bacteriol 190:2911–2919PubMedPubMedCentralCrossRefGoogle Scholar
  153. Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroyxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate limitation. Biotechnol Lett 23:1095–1099CrossRefGoogle Scholar
  154. Nobes GAR, Jurasek L, Marchessault RH, Martin DP, Putaux JL, Chanzy H (2000) Growth and kinetics of in vitro poly([R](-)-3-hydroxybutyrate) granules interpreted as particulate polymerization with coalescence. Macromol Rapid Commun 21:77–84CrossRefGoogle Scholar
  155. Numata K, Motoda Y, Watanabe S, Osanai T, Kigawa T (2015) Co-expression of two polyhydroxyalkanoate synthase subunits from Synechocystis sp. PCC 6803 by cell free synthesis and their specific activity for polymerization of 3-hydroxybutyryl-CoA. Biochemistry 54:1401–1407PubMedCrossRefPubMedCentralGoogle Scholar
  156. Obruca S (2010) Controlled production and degradation of selected biomaterials. Doctoral thesis, Brno University of TechnologyGoogle Scholar
  157. Oeding V, Schlegel HG (1973) Beta-ketothiolase from Hydrogenomonas eutropha HI6 and its significance in the regulation of poly-beta-hydroxybutyrate metabolism. Biochem J 134:239–248PubMedPubMedCentralCrossRefGoogle Scholar
  158. Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, Tanaka K, Saito K, Hirai MY (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20:525–535Google Scholar
  159. Page WJ (1992) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol Rev 103:149–158CrossRefGoogle Scholar
  160. Panda B, Mallick N (2007) Enhanced poly-β-hydroxybutyrate accumulation in a unicellular cyanobactrium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44:194–198PubMedCrossRefPubMedCentralGoogle Scholar
  161. Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Biores Technol 97:1296–1301CrossRefGoogle Scholar
  162. Panda B, Sharma L, Singh AK, Mallick N (2008) Thin layer chromatographic detection of poly-β-hydroxybutyrate (PHB) and poly-β-hydroxybutyrate (PHV) in cyanobacteria. Ind J Biotechnol 7:230–234Google Scholar
  163. Parlane NA, Gupta SK, Rubio Reyes P, Chen S, Gonzalez-Miro M, Wedlock DN, Rehm BH (2016) Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications. ACS Biomater Sci Eng (In press).  https://doi.org/10.1021/acsbiomaterials.6b00355CrossRefGoogle Scholar
  164. Peoples OP, Sinskey AJ (1989a) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identiication and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303Google Scholar
  165. Peoples OP, Sinskey AJ (1989b) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297Google Scholar
  166. Perepelkin KE (2005) Polymeric materials of the future based on renewable plant resources and biotechnologies: fibres, films and plastics. Fibre Chem 37:417–430CrossRefGoogle Scholar
  167. Pfeiffer D, Jendrossek D (2011) Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology 157:2795–2807PubMedCrossRefPubMedCentralGoogle Scholar
  168. Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413PubMedCrossRefPubMedCentralGoogle Scholar
  169. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  170. Phithakrotchanakoon C, Champreda V, Aiba S, Pootanakit K, Tanapongpipat S (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77:1262–1268PubMedCrossRefPubMedCentralGoogle Scholar
  171. Plastics Europe (2015) Plastics-the Facts 2014/2015: an analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf
  172. Plastics Europe (2016) Plastics-the Facts 2016: an analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/4315/1310/4805/plastic-the-fact-2016.pdf
  173. Pötter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromol 6:552–560CrossRefGoogle Scholar
  174. Pötter M, Steinbüchel A (2006) Biogenesis and Structure of polyhydroxyalkanoate granules. Springer, Berlin, pp 109–136Google Scholar
  175. Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426PubMedCrossRefPubMedCentralGoogle Scholar
  176. Pötter M, Muller H, Steinbuchel A (2005) Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology 151:825–833Google Scholar
  177. Prieto MA, Buhler B, Jung K, Witholt B, Kessler B (1999) PhaF, a polyhydroxyalkanoate-granule associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868PubMedPubMedCentralGoogle Scholar
  178. Punrattanasin W (2001) The utilization of activated sludge polyhydroxyalkanoates for the production of biodegradable plastics. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USAGoogle Scholar
  179. Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147:3353–3358PubMedCrossRefPubMedCentralGoogle Scholar
  180. Qi Q, Steinbuchel A, Rehm BH (2000) In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol 54:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  181. Ravenstijn JTJ (2010) The state-of-the art on bioplastics: products, markets, trends and technologies. Polymedia, LüdenscheidGoogle Scholar
  182. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  183. Reddy MV, Mohan SV (2015) Polyhydroxyalkanoates production by newly isolated bacteria Serratia ureilytica using volatile fatty acids as substrate: Bio-electro kinetic analysis. J Microb Biochem Technol 7:26–32Google Scholar
  184. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 37:15–33CrossRefGoogle Scholar
  185. Rehm BH (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bio-particles. Curr Issues Mol Biol 9:41–62PubMedGoogle Scholar
  186. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19PubMedCrossRefGoogle Scholar
  187. Rehm BH, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273:24044–24051PubMedCrossRefGoogle Scholar
  188. Rehm BH, Antonio RV, Spiekermann P, Amara AA, Steinbüchel A (2002) Molecular characterization of the poly(3hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594:178–190PubMedCrossRefGoogle Scholar
  189. Samantaray S, Mallick N (2012) Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. J Appl Phycol 24:803–814CrossRefGoogle Scholar
  190. Samantaray S, Mallick N (2014) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J Appl Phycol 26:237–245CrossRefGoogle Scholar
  191. Samantaray S, Mallick N (2015) Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Curr Biotechnol 4:366–372CrossRefGoogle Scholar
  192. Sangkharak K, Prasertsan P (2012) Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. J Gen Appl Microbiol 58:173–182PubMedCrossRefGoogle Scholar
  193. Sankhla SS, Bhati R, Singh AK, Mallick N (2010) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Biores Tecnol 101:1947–1953CrossRefGoogle Scholar
  194. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847PubMedPubMedCentralCrossRefGoogle Scholar
  195. Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  196. Shah DT, Tran M, Berger PA, Aggarwal P, Asrar J, Madden LA, Anderson AJ (2000) Synthesis and properties of hydroxy-terminated poly(hydroxyalkanoate)s. Macromolecules 33:2875–2880CrossRefGoogle Scholar
  197. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265PubMedCrossRefGoogle Scholar
  198. Shamala TR, Vijayendra SV, Joshi GJ (2012) Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Braz J Microbiol 43:1094–1102Google Scholar
  199. Sharma L, Mallick N (2005a) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Biores Technol 96:1304–1310CrossRefGoogle Scholar
  200. Sharma L, Mallick N (2005b) Enhancement of poly-β-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 27:59–62PubMedCrossRefGoogle Scholar
  201. Sharma L, Panda B, Singh AK, Mallick N (2006) Studies on poly-β-hydroxybutyrate synthase activity of Nostoc muscorum. J Gen Appl Microbiol 52:209–214PubMedCrossRefGoogle Scholar
  202. Sharma L, Singh AK, Panda B, Mallick N (2007) Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Biores Technol 98:987–993CrossRefGoogle Scholar
  203. Sharma L, Srivastava JK, Singh AK (2016) Biodegradable polyhydroxyalkanoate thermoplastics substituting xenobiotic plastics: a way forward for sustainable environment. In: Singh A, Prasad SM, Singh RP (eds) Plant responses to xenobiotics. Springer, Singapore, pp 317–346CrossRefGoogle Scholar
  204. Shimizu R, Chou K, Orita I, Suzuki Y, Nakamura S, Fukui T (2013) Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiol 13:169–183PubMedPubMedCentralCrossRefGoogle Scholar
  205. Shrivastav A, Mishra SK, Mishra S (2010) Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46:255–260PubMedCrossRefGoogle Scholar
  206. Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotech 15:63–67CrossRefGoogle Scholar
  207. Singh A (2009) Accumulation of a novel short-chain-length-long-chain-length polyhydroxyalkanoate co-polymer in a sludge-isolated Pseudomonas aeruginosa MTCC 7925. PhD thesis, Indian Institute of Technology, Kharagpur, India, pp 41–71Google Scholar
  208. Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46:350–357PubMedCrossRefGoogle Scholar
  209. Singh AK, Mallick N (2009a) Exploitation of inexpensive substrates for production of a novel SCL–LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol 36:347–354PubMedCrossRefGoogle Scholar
  210. Singh AK, Mallick N (2009b) SCL-LCL-PHA copolymer production by a local isolate, Pseudomonas aeruginosa MTCC 7925. Biotechnol J 4:703–711PubMedCrossRefGoogle Scholar
  211. Singh AK, Mallick N (2017a) Biological system as a reactor for production of biodegradable thermoplastics, Polyhydroxyalkanoates. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. CRC Press Taylor and Francis, USA, pp 281–323Google Scholar
  212. Singh AK, Mallick N (2017b) Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett 364(20). https://doi.org/10.1093/femsle/fnx189
  213. Singh AK, Mallick N (2017c) Pseudomonas aeruginosa MTCC 7925: Biofactory for Novel SCL-LCL-PHA. LAP Lambert Academic Publishing, Germany, pp 1–148Google Scholar
  214. Singh AK, Bhati R, Samantaray S, Mallick N (2013) Pseudomonas aeruginosa MTCC 7925: producer of a novel SCL-LCL-PHA co-polymer. Curr Biotechnol 2:81–88CrossRefGoogle Scholar
  215. Singh AK, Ranjana B, Mallick N (2015) Pseudomonas aeruginosa MTCC 7925 as a biofactory for production of the novel SCL-LCL- PHA thermoplastic from non-edible oils. Curr Botechnol 4:65–74CrossRefGoogle Scholar
  216. Singh AK, Sharma L, Mallick N, Mala J (2017) Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J Appl Phycol 29:1213–1232CrossRefGoogle Scholar
  217. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436PubMedPubMedCentralCrossRefGoogle Scholar
  218. Song JJ, Yoon SC (1996) Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BMO1. Appl Environ Microbiol 62:536–544PubMedPubMedCentralGoogle Scholar
  219. Stal LJ, Heyer H, Jacobs G (1990) Occurrence and role of poly-hydroxy-alkanoates in the cyanobacterium Oscillatoria limosa. In: Dawes EA (ed) Novel biodegradable microbial polymers. Springer, pp 435–438Google Scholar
  220. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton, New York, pp 124–213Google Scholar
  221. Steinbüchel A (1996) PHB and other polyhydroxyalkanoic acids. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, New York, pp 362–364Google Scholar
  222. Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123PubMedGoogle Scholar
  223. Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230CrossRefGoogle Scholar
  224. Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Synthesis and production of poly(3-hydroxyvaleric acid) homopolymer by Chromobacterium violaceum. Appl Microbiol Biotechnol 39:443–449CrossRefGoogle Scholar
  225. Stubbe J, Tian J (2003) Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20:445–457PubMedCrossRefGoogle Scholar
  226. Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P (2005) Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480PubMedCrossRefGoogle Scholar
  227. Su L, Lenz RW, Takagi Y, Zhang S, Goodwin S, Zhong L, Martin DP (2000) Enzymatic polymerization of (R)-3-hydroxyalkanoates by a bacterial polymerase. Macromolecules 33:229–231CrossRefGoogle Scholar
  228. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555Google Scholar
  229. Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. J Biosci Bioengg 95:77–81CrossRefGoogle Scholar
  230. Takahashi T, Miyake M, Tokiwa Y, Asada Y (1998) Improved accumulation of poly-3-hydroxybutyrate by a recombinant cyanobacterium. Biotechnol Lett 20:183–186CrossRefGoogle Scholar
  231. Tan IKP, Sudesh Kumar K, Theanmalar M, Gan SN, Gordon B (1997) Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol 47:207–211CrossRefGoogle Scholar
  232. Taroncher-Oldenburg G, Nishina K, Stephanopoulos G (2000) Identification and analysis of the polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 66:4440–4448PubMedPubMedCentralCrossRefGoogle Scholar
  233. Thakor NS, Patel MA, Trivedi UB, Patel KC (2003) Production of poly(β-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene. World J Microbiol Biotechnol 19:185–189CrossRefGoogle Scholar
  234. Tian J, He A, Lawrence AG, Liu P, Watson N, Sinskey AJ, Stubbe J (2005a) Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative western analysis and transmission electron microscopy. J Bacteriol 187:3825–3832PubMedPubMedCentralCrossRefGoogle Scholar
  235. Tian J, Sinskey AJ, Stubbe J (2005b) Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase. Biochemistry 44:1495–1503PubMedCrossRefGoogle Scholar
  236. Tian S-J, Lai W-J, Zheng Z, Wang H-X, Chen G-Q (2005c) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25PubMedCrossRefGoogle Scholar
  237. Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30PubMedCrossRefGoogle Scholar
  238. Tirapelle EF, Muller-Santos M, Tadra-Sfeir MZ, Kadowaki MA, Steffens MB, Monteiro RA, Souza EM, Pedrosa FO, Chubatsu LS (2013) Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1-old partners, new players. PLoS ONE 8:e75066PubMedPubMedCentralCrossRefGoogle Scholar
  239. Toh PSY, Jau MH, Yew SP, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J Biosci 19:21–38Google Scholar
  240. Tomizawa S, Hyakutake M, Saito Y, Agus J, Mizuno K, Abe H, Tsuge T (2011) Molecular weight change of polyhydroxyalkanoate (PHA) caused by the PhaC subunit of PHA synthase from Bacillus cereus YB-4 in recombinant Escherichia coli. Biomacromol 12:2660–2666CrossRefGoogle Scholar
  241. Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198Google Scholar
  242. Uchino K, Saito T, Gebauer B, Jendrossek D (2007) Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J Bacteriol 189:8250–8256PubMedPubMedCentralCrossRefGoogle Scholar
  243. Ushimaru K, Motoda Y, Numata K, Tsuge T (2014) Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase. Appl Environ Microbiol 80:2867–2873PubMedPubMedCentralCrossRefGoogle Scholar
  244. Verlinden RA, Hill DJ, Kenward CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449PubMedCrossRefPubMedCentralGoogle Scholar
  245. Vincenzini M, De Philippis R (1999) Polyhydroxyalkanoates. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis Inc., USA, pp 292–312Google Scholar
  246. Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12:262PubMedPubMedCentralCrossRefGoogle Scholar
  247. Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530PubMedCrossRefPubMedCentralGoogle Scholar
  248. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619PubMedPubMedCentralCrossRefGoogle Scholar
  249. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763PubMedCrossRefPubMedCentralGoogle Scholar
  250. Wang C, Sheng X, Equi RC, Trainer MA, Charles TC, Sobral BW (2007) Influence of the poly-3hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021. J Bacteriol 189:9050–9056PubMedPubMedCentralCrossRefGoogle Scholar
  251. Wang L, Zhu WF, Wang X, Chen X, Chen G-Q, Xu K (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173CrossRefGoogle Scholar
  252. Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77PubMedCrossRefPubMedCentralGoogle Scholar
  253. Wei DX, Chen CB, Fang G, Li SY, Chen GQ (2011) Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl Microbiol Biotechnol 91:1037–1047PubMedCrossRefGoogle Scholar
  254. Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15:390–394PubMedCrossRefGoogle Scholar
  255. Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177:2425–2435PubMedPubMedCentralCrossRefGoogle Scholar
  256. Williamson DH, Wilkinson JF (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol 19:198–209PubMedCrossRefGoogle Scholar
  257. Wodzinska J, Snell KD, Rhomberg A, Sinskey AJ, Biemann K, Stubbe J (1996) Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 118:6319–6320CrossRefGoogle Scholar
  258. Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616PubMedCrossRefGoogle Scholar
  259. Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104PubMedCrossRefGoogle Scholar
  260. Yao YC, Zhan XY, Zou XH, Wang ZH, Xiong YC, Zhang J, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830PubMedCrossRefGoogle Scholar
  261. Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218PubMedCrossRefGoogle Scholar
  262. York GM, Junker BH, Stubbe J, Sinskey AJ (2001a) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183:4217–4226PubMedPubMedCentralCrossRefGoogle Scholar
  263. York GM, Stubbe J, Sinskey AJ (2001b) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397PubMedPubMedCentralCrossRefGoogle Scholar
  264. York GM, Stubbe J, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  265. Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205PubMedPubMedCentralGoogle Scholar
  266. Zhang S, Yasuo T, Lenz RW, Goodwin S (2000) Kinetic and mechanistic characterization of the polyhydroxybutyrate synthase from Ralstonia eutropha. Biomacromol 1:244–251CrossRefGoogle Scholar
  267. Zhang JY, Hao N, Chen GQ (2006) Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid. Appl Microbiol Biotechnol 71:222–227PubMedCrossRefPubMedCentralGoogle Scholar
  268. Zhang XJ, Luo RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromol 10:707–711CrossRefGoogle Scholar
  269. Zinn M, Hany R (2005) Tailored material properties of Polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411CrossRefGoogle Scholar
  270. Zou XH, Li HM, Wang S, Leski M, Yao YC, Yang XD, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Akhilesh Kumar Singh
    • 1
  • Laxuman Sharma
    • 2
  • Janmejai Kumar Srivastava
    • 1
  • Nirupama Mallick
    • 3
  • Mohammad Israil Ansari
    • 4
  1. 1.Amity Institute of BiotechnologyAmity University Uttar Pradesh, Lucknow CampusLucknowIndia
  2. 2.Department of HorticultureSikkim UniversityGangtokIndia
  3. 3.Agricultural and Food Engineering DepartmentIndian Institute of TechnologyKharagpurIndia
  4. 4.Department of BotanyUniversity of LucknowLucknowIndia

Personalised recommendations