Advertisement

Biomedical Research in Aging

  • José Mario González-MeljemEmail author
  • Scott Haston
  • Suchira Gallage
  • Andrew J. Innes
Chapter

Abstract

Biomedical research has been instrumental in identifying key molecular and cellular changes that occur throughout the aging process, also known as the Hallmarks of Aging. Notably, these are shared between humans and several other species that have served as models for the study of aging in the laboratory. In this chapter, we discuss current knowledge regarding the significance of hallmarks such as: decay of stem cell function, acquisition of genomic instability, DNA damage, telomere attrition, deregulated nutrient sensing, chronic inflammation and cellular senescence. We further describe current methodological issues, experimental techniques and best practices for the study of each hallmark across different in vivo and in vitro systems, while also pointing at their limitations. Finally, we provide future perspectives for the improvement of experimental designs in biomedical research of aging.

Keywords

Stem cells DNA-damage mTOR Inflammation Epigenetics Senescence SASP 

Notes

Acknowledgements

We are very grateful to Prof. Juan Pedro Martinez-Barbera for critical reading and comments on the manuscript.

References

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3(5):a004000.  https://doi.org/10.1101/cshperspect.a004440 CrossRefGoogle Scholar
  3. 3.
    Baumann K (2016) Ageing: the yin and yang of mitochondrial dysfunction. Nat Rev Mol Cell Biol 17(6):331.  https://doi.org/10.1038/nrm.2016.71 CrossRefPubMedGoogle Scholar
  4. 4.
    Hsu Y-C, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856.  https://doi.org/10.1038/nm.3643 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Patel DM, Shah J, Srivastava AS (2013) Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int 2013:1–15.  https://doi.org/10.1155/2013/496218 CrossRefGoogle Scholar
  6. 6.
    van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee ANY, Gregorieff A et al (2012) Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14(10):1099–1104.  https://doi.org/10.1038/ncb2581 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gómez-Gaviro MV, Lovell-Badge R, Fernández-Avilés F, Lara-Pezzi E (2012) The vascular stem cell niche. J Cardiovasc Transl Res 5(5):618–630.  https://doi.org/10.1007/s12265-012-9371-x CrossRefPubMedGoogle Scholar
  8. 8.
    Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 43(1):3–14.  https://doi.org/10.1242/dev.130633 CrossRefGoogle Scholar
  9. 9.
    Cheung TH, Rando TACTH (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340.  https://doi.org/10.1038/nrm3591 CrossRefPubMedGoogle Scholar
  10. 10.
    Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713CrossRefGoogle Scholar
  11. 11.
    Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435.  https://doi.org/10.1038/nm.4000 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880.  https://doi.org/10.1038/nm.3651 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ahmed ASI, Sheng MH, Wasnik S, Baylink DJ, Lau K-HW (2017) Effect of aging on stem cells. World J Exp Med 7(1):1–10.  https://doi.org/10.5493/wjem.v7.i1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611.  https://doi.org/10.1016/j.cell.2008.01.038 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Donnenberg VS, Ulrich H, Tárnok A (2013) Cytometry in stem cell research and therapy. Cytometry A 83(1):1–4.  https://doi.org/10.1002/cyto.a.22243 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sarma NJ, Takeda A, Yaseen NR (2010) Colony Forming Cell (CFC) assay for human hematopoietic cells. J Vis Exp 18(46):pii2196.  https://doi.org/10.3791/2195 CrossRefGoogle Scholar
  17. 17.
    Pavlović M, Radotić K (2017) Stemness and stem cell markers. In: Animal and plants stem cells. Springer International Publishing, Cham, pp 27–32CrossRefGoogle Scholar
  18. 18.
    Ogden DA, Mickliem HS (1976) The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22(3):287–293CrossRefGoogle Scholar
  19. 19.
    Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144(6):1113–1122CrossRefGoogle Scholar
  20. 20.
    Hsu Y-C (2015) Theory and practice of lineage tracing. Stem Cells 33(11):3197–3204.  https://doi.org/10.1002/stem.2123 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL (2017) Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell 16(5):1195–1199.  https://doi.org/10.1111/acel.12641 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Harrison DE, Astle CM, Delaittre JA (1978) Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med 147(5):1526–1531CrossRefGoogle Scholar
  23. 23.
    Roose H, Cox B, Boretto M, Gysemans C, Vennekens A, Vankelecom H (2017) Major depletion of SOX2+ stem cells in the adult pituitary is not restored which does not affect hormonal cell homeostasis and remodelling. Sci Rep 7(1):16940.  https://doi.org/10.1038/s41598-017-16796-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ (2014) Lgr5+ Stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14(2):149–159.  https://doi.org/10.1016/j.stem.2013.11.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Grégoire D, Kmita M (2014) Genetic cell ablation. In: Methods in molecular biology, Clifton, pp 421–436Google Scholar
  26. 26.
    Richardson WD, Young KM, Tripathi RB, McKenzie I (2011) NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70(4):661–673.  https://doi.org/10.1016/j.neuron.2011.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033CrossRefGoogle Scholar
  28. 28.
    Maslov AY, Barone TA, Plunkett RJ, Pruitt SC (2004) Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 24(7):1726–1733CrossRefGoogle Scholar
  29. 29.
    Ahlenius H, Visan V, Kokaia M, Lindvall O, Kokaia Z (2009) Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J Neurosci 29(14):4408–4419.  https://doi.org/10.1523/JNEUROSCI.6003-08.2009 CrossRefPubMedGoogle Scholar
  30. 30.
    Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634.  https://doi.org/10.1126/science.1251141 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107(4):603–613CrossRefGoogle Scholar
  32. 32.
    Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J etal (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20(6):659–663.  https://doi.org/10.1038/nm.3569 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810CrossRefGoogle Scholar
  34. 34.
    Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764CrossRefGoogle Scholar
  35. 35.
    Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256(6 Pt 1):C1262–C1266CrossRefGoogle Scholar
  36. 36.
    Harrison DE (1973) Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc Natl Acad Sci U S A 70(11):3184–3188CrossRefGoogle Scholar
  37. 37.
    Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703.  https://doi.org/10.1084/jem.20111490 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106(4):1479–1487CrossRefGoogle Scholar
  39. 39.
    Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2(9):1011–1016CrossRefGoogle Scholar
  40. 40.
    Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192(9):1273–1280CrossRefGoogle Scholar
  41. 41.
    Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199CrossRefGoogle Scholar
  42. 42.
    Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360.  https://doi.org/10.1038/nature11438 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R et al (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652.  https://doi.org/10.1126/science.1251152 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ciccia A, Elledge SJ (2010) The DNA damage response: Making it safe to play with knives. Mol Cell 40(2):179–204.  https://doi.org/10.1016/j.molcel.2010.09.019 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528.  https://doi.org/10.1038/nature08982 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H et al (2013) The role of DNA damage and repair in aging through the prism of koch-like criteria. Ageing Res Rev 12(2):661–684.  https://doi.org/10.1016/j.arr.2012.02.001 CrossRefPubMedGoogle Scholar
  47. 47.
    Olive PL, Banáth JP (2006) The comet assay: A method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29CrossRefGoogle Scholar
  48. 48.
    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078.  https://doi.org/10.1038/nature08467 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S (2015) DNA damage foci: meaning and significance. Environ Mol Mutagen 56(6):491–504.  https://doi.org/10.1002/em.21944 CrossRefPubMedGoogle Scholar
  50. 50.
    Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15(1):7–18.  https://doi.org/10.1038/nrm3719 CrossRefPubMedGoogle Scholar
  51. 51.
    Montpetit AJ, Alhareeri AA, Montpetit M, Starkweather AR, Elmore LW, Filler K et al (2014) Telomere length: a review of methods for measurement. Nurs Res 63(4):289–299.  https://doi.org/10.1097/NNR.0000000000000037 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gordon LB, Rothman FG, López-Otín C, Misteli T (2014) Progeria: a paradigm for translational medicine. Cell 156(3):400–407.  https://doi.org/10.1016/j.cell.2013.12.028 CrossRefPubMedGoogle Scholar
  53. 53.
    Gonzalo S, Kreienkamp R, Askjaer P (2017) Hutchinson-gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev 33:18–29.  https://doi.org/10.1016/j.arr.2016.06.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Oshima J, Sidorova JM, Monnat RJ (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114.  https://doi.org/10.1016/j.arr.2016.03.002 CrossRefPubMedGoogle Scholar
  55. 55.
    Dokal I (2011) Dyskeratosis congenita. Hematol Am Soc Hematol Educ Progr 2011:480–486.  https://doi.org/10.1182/asheducation-2011.1.480 CrossRefGoogle Scholar
  56. 56.
    Opresko PL, Shay JW (2017) Telomere-associated aging disorders. Ageing Res Rev 33:52–66.  https://doi.org/10.1016/j.arr.2016.05.009 CrossRefPubMedGoogle Scholar
  57. 57.
    Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA (2017) Cockayne syndrome: clinical features, model systems and pathways. Ageing Res Rev 33:3–17.  https://doi.org/10.1016/j.arr.2016.08.002 CrossRefPubMedGoogle Scholar
  58. 58.
    Brosh RM, Bellani M, Liu Y, Seidman MM (2017) Fanconi anemia: a DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev 33:67–75.  https://doi.org/10.1016/j.arr.2016.05.005 CrossRefPubMedGoogle Scholar
  59. 59.
    Blasco M, Lee HW, Hande MP, Samper E, Lansdorp PM, RA DP et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25–34CrossRefGoogle Scholar
  60. 60.
    Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712CrossRefGoogle Scholar
  61. 61.
    Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A et al (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749CrossRefGoogle Scholar
  62. 62.
    Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D et al (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882CrossRefGoogle Scholar
  63. 63.
    Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S et al (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A 102(9):10291–10296CrossRefGoogle Scholar
  64. 64.
    Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C et al (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116(8):2115–2121CrossRefGoogle Scholar
  65. 65.
    Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C et al (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107.  https://doi.org/10.1126/scitranslmed.3002847 CrossRefPubMedGoogle Scholar
  66. 66.
    Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acín-Pérez R, Enriquez JA, López-Otín C et al (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127(24):2442–2451.  https://doi.org/10.1161/CIRCULATIONAHA.112.000571 CrossRefPubMedGoogle Scholar
  67. 67.
    Lebel M, Leder P (1998) A deletion within the murine werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A 95(22):13097–13102CrossRefGoogle Scholar
  68. 68.
    Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouint R (2003) Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, cancer in mice. Am J Pathol 162(5):1559–1569CrossRefGoogle Scholar
  69. 69.
    Labbé A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG et al (2011) Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for werner syndrome. J Gerontol A Biol Sci Med Sci 66(3):264–278.  https://doi.org/10.1093/gerona/glq184 CrossRefPubMedGoogle Scholar
  70. 70.
    Massip L, Garand C, Turaga RVN, Deschênes F, Thorin E, Lebel M (2006) Increased insulin, triglycerides, reactive oxygen species, and cardiac fibrosis in mice with a mutation in the helicase domain of the Werner syndrome gene homologue. Exp Gerontol 41(2):157–168CrossRefGoogle Scholar
  71. 71.
    Van der Horst GTJ, Van Steeg H, Berg RJW, Van Gool AJ, De Wit J, Weeda G et al (1997) Defective transcription-coupled repair in cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89(3):425–435CrossRefGoogle Scholar
  72. 72.
    Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin P-C, Minor RK et al (2012) Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. J Exp Med 209(4):855–869.  https://doi.org/10.1084/jem.20111721 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Herrera E, Samper E, Martín-Caballero J, Flores JM, Lee HW, Blasco MA (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18(11):2950–2960CrossRefGoogle Scholar
  74. 74.
    Lee HW, Gottlieb GJ, Horner JW, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574CrossRefGoogle Scholar
  75. 75.
    Leri A, Franco S, Zacheo A, Barlucchi L, Chimenti S, Limana F et al (2003) Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 22(1):131–139CrossRefGoogle Scholar
  76. 76.
    Samper E, Fernández P, Eguía R, Martín-Rivera L, Bernad A, Blasco M et al (2002) Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99(8):2767–2775CrossRefGoogle Scholar
  77. 77.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423CrossRefGoogle Scholar
  78. 78.
    Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839.  https://doi.org/10.1016/j.cell.2016.07.050 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T et al (2010) Elevated histone expression promotes life span extension. Mol Cell 39(5):724–735.  https://doi.org/10.1016/j.molcel.2010.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17(10):1218–1225.  https://doi.org/10.1038/nsmb.1897 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS et al (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466(7304):383–387.  https://doi.org/10.1038/nature09195 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Jin C, Li J, Green CD, Yu X, Tang X, Han D et al (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14(2):161–172.  https://doi.org/10.1016/j.cmet.2011.07.001 CrossRefPubMedGoogle Scholar
  83. 83.
    Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314.  https://doi.org/10.1038/ncb1975 CrossRefPubMedGoogle Scholar
  84. 84.
    Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580CrossRefGoogle Scholar
  85. 85.
    Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230CrossRefGoogle Scholar
  86. 86.
    Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci 101(45):15998–16003CrossRefGoogle Scholar
  87. 87.
    Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221.  https://doi.org/10.1038/nature10815 CrossRefPubMedGoogle Scholar
  88. 88.
    Herranz D, Muñoz-Martin M, Cañamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O et al (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3.  https://doi.org/10.1038/ncomms1001 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3(2):319–327.  https://doi.org/10.1016/j.celrep.2013.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8(1):35–46CrossRefGoogle Scholar
  91. 91.
    Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11(10):1261–1267.  https://doi.org/10.1038/ncb1971 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Tsurumi A, Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics 7(7):680–688.  https://doi.org/10.4161/epi.20540 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K et al (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8(1):e1002473.  https://doi.org/10.1371/journal.pgen.100247 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Narita MM, Nũnez S, Heard E, Narita MM, Lin AW, Hearn SA et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716CrossRefGoogle Scholar
  95. 95.
    Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11(3):191–203.  https://doi.org/10.1038/nrg2732 CrossRefPubMedGoogle Scholar
  96. 96.
    Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, van Tuyn J etal (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15(12):1495–1506.  https://doi.org/10.1038/ncb2879 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J etal (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340.  https://doi.org/10.1101/gr.096826.109 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR et al (2006) Mutant nuclear lamin a leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci 103(23):8703–8708CrossRefGoogle Scholar
  99. 99.
    Osorio FG, Varela I, Lara E, Puente XS, Espada J, Santoro R et al (2010) Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in zmpste24 metalloprotease. Aging Cell 9(6):947–957.  https://doi.org/10.1111/j.1474-9726.2010.00621.x CrossRefPubMedGoogle Scholar
  100. 100.
    Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115CrossRefGoogle Scholar
  101. 101.
    Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al (2016) DNA methylation - based measures of biological age : meta - analysis predicting time to death. Aging (Albany) 8(9):1844–1865. doi:  https://doi.org/10.18632/aging.101020 CrossRefGoogle Scholar
  102. 102.
    Ni Z, Ebata A, Alipanahiramandi E, Lee SS (2012) Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11(2):315–325.  https://doi.org/10.1111/j.1474-9726.2011.00785.x CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807.  https://doi.org/10.1038/nature08085 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase. Nature 403(6771):795–800CrossRefGoogle Scholar
  105. 105.
    Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329CrossRefGoogle Scholar
  106. 106.
    McCormick MA, Mason AG, Guyenet SJ, Dang W, Garza RM, Ting MK et al (2014) The SAGA histone deubiquitinase module controls yeast replicative lifespan via sir2 interaction. Cell Rep 8(2):477–486.  https://doi.org/10.1016/j.celrep.2014.06.037 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Grillari J, Grillari-Voglauer R, Jansen-Dürr P (2010) Post-translational modification of cellular proteins by ubiquitin and ubiquitin-like molecules: role in cellular senescence and aging. Adv Exp Med Biol 694:172–196CrossRefGoogle Scholar
  108. 108.
    Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517(7534):302–310.  https://doi.org/10.1038/nature14190 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161(1):67–83.  https://doi.org/10.1016/j.cell.2015.02.041 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328(5976):321–326.  https://doi.org/10.1126/science.1172539 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S et al (2016) A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 15(10):2136–2146.  https://doi.org/10.1016/j.celrep.2016.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Di Biase S, Lee C, Brandhorst S, Manes B, Buono R, Cheng CW et al (2016) Fasting-mimicking diet reduces ho-1 to promote t cell-mediated tumor cytotoxicity. Cancer Cell 30(1):136–146.  https://doi.org/10.1016/j.ccell.2016.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al (2017) Fasting-mimicking diet promotes ngn3-driven β-cell regeneration to reverse diabetes. Cell 168(5):775–788.e12. doi:  https://doi.org/10.1016/j.cell.2017.01.040 CrossRefGoogle Scholar
  114. 114.
    Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J etal (2017) Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 9(377):eaai8700.  https://doi.org/10.1126/scitranslmed.aai8700 CrossRefPubMedGoogle Scholar
  115. 115.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395.  https://doi.org/10.1038/nature08221 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Selman C, Tullet JM, Wieser D, Irvine EE, Lingard SJ, Choudhury AI et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326(5949):140–144.  https://doi.org/10.1126/science.1177221 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345.  https://doi.org/10.1038/nature11861 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bitto A, Ito TK, Pineda VV, Letexier NJ, Huang HZ, Sutlief E et al (2016) Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 5(pii):e16351.  https://doi.org/10.7554/eLife.16351 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M et al (2014) Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13(3):468–477.  https://doi.org/10.1111/acel.12194 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131(16):3897–3906CrossRefGoogle Scholar
  121. 121.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10):885–890CrossRefGoogle Scholar
  122. 122.
    Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N et al (2005) Regulation of yeast replicative life span by TOR and Sch9 response to nutrients. Science 310(5751):1193–1196CrossRefGoogle Scholar
  123. 123.
    Wu JJ, Liu J, Chen E, Wang J, Cao L, Narayan N et al (2013) Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep 4(5):913–920.  https://doi.org/10.1016/j.celrep.2013.07.030 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefGoogle Scholar
  125. 125.
    Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105CrossRefGoogle Scholar
  126. 126.
    Franceschi C, Campisi J (2014) Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9.  https://doi.org/10.1093/gerona/glu057 CrossRefPubMedGoogle Scholar
  127. 127.
    Ostan R, Bucci L, Capri M, Salvioli S, Scurti M, Pini E et al (2008) Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15(4-6):224–240.  https://doi.org/10.1159/000156466 CrossRefPubMedGoogle Scholar
  128. 128.
    Youm Y-H, Kanneganti T-D, Vandanmagsar B, Zhu X, Ravussin A, Adijiang A et al (2012) The NLRP3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 1(1):56–68.  https://doi.org/10.1016/j.celrep.2011.11.005 CrossRefPubMedGoogle Scholar
  129. 129.
    Youm Y-H, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A et al (2013) Canonical nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18(4):519–532.  https://doi.org/10.1016/j.cmet.2013.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P et al (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153(4):828–839.  https://doi.org/10.1016/j.cell.2013.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94.  https://doi.org/10.1038/nature10357 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R et al (2014) Restoring systemic gdf11 levels mouse skeletal muscle. Science 344(6184):649–652.  https://doi.org/10.1126/science.1251152 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J etal (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189.  https://doi.org/10.1038/nature16932 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169(1):132–147.  https://doi.org/10.1016/j.cell.2017.02.031 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990.  https://doi.org/10.1038/ncb2784 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y, Stemmer K et al (2014) Metabolic activation of intrahepatic cd8 + t cells and nkt cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26(4):549–564.  https://doi.org/10.1016/j.ccell.2014.09.003 CrossRefGoogle Scholar
  137. 137.
    Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A et al (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diag 14(1):22–29.  https://doi.org/10.1016/j.jmoldx.2011.08.002 CrossRefGoogle Scholar
  138. 138.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642.  https://doi.org/10.1038/436642a CrossRefPubMedGoogle Scholar
  139. 139.
    Pérez-Mancera PA, Young ARJ, Narita M (2014) Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14(8):547–558.  https://doi.org/10.1038/nrc3773 CrossRefPubMedGoogle Scholar
  140. 140.
    Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM et al (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14(4):355–365.  https://doi.org/10.1038/ncb2466 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602.  https://doi.org/10.1016/S0092-8674(00)81902-9 CrossRefPubMedGoogle Scholar
  142. 142.
    Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9(2):81–94.  https://doi.org/10.1038/nrc2560 CrossRefPubMedGoogle Scholar
  143. 143.
    Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130(2):223–233.  https://doi.org/10.1016/j.cell.2007.07.003 CrossRefPubMedGoogle Scholar
  144. 144.
    Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257CrossRefGoogle Scholar
  145. 145.
    Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, Von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3):311–323.  https://doi.org/10.1111/j.1474-9726.2009.00481.x CrossRefPubMedGoogle Scholar
  146. 146.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92(20):9363–9367CrossRefGoogle Scholar
  147. 147.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236.  https://doi.org/10.1038/nature10600 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J etal (2016) Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature 530(7589):184–189.  https://doi.org/10.1038/nature16932 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Chang J, Wang Y, Shao L, Laberge R-M, Demaria M, Campisi J etal (2016) Clearance of senescent cells by {ABT263} rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83.  https://doi.org/10.1038/nm.4010 CrossRefPubMedGoogle Scholar
  150. 150.
    Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM et al (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15(5):973–977.  https://doi.org/10.1111/acel.12458 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079.  https://doi.org/10.1038/nm.4385 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  153. 153.
    Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S et al (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24(30):4765–4777CrossRefGoogle Scholar
  154. 154.
    Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295(5564):2446–2449CrossRefGoogle Scholar
  155. 155.
    Gniadecki R, Hansen M, Wulf HC (2000) Resistance of senescent keratinocytes to UV-induced apoptosis. Cell Mol Biol (Noisy-le-grand) 46(1):121–127Google Scholar
  156. 156.
    Hampel B, Wagner M, Teis D, Zwerschke W, Huber LA, Jansen-Dürr P (2005) Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell 4(6):325–330CrossRefGoogle Scholar
  157. 157.
    Ryu SJ, Oh YS, Park SC (2007) Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ 14(5):1020–1028PubMedGoogle Scholar
  158. 158.
    Chen W, Kang J, Xia J, Li Y, Yang B, Chen B et al (2008) p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts. Int J Mol Med 21(5):645–653PubMedGoogle Scholar
  159. 159.
    Pasillas MP, Shields S, Reilly R, Strnadel J, Behl C, Park R et al (2015) Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation. Mol Cell Proteomics 14(1):1–14.  https://doi.org/10.1074/mcp.M114.037697 CrossRefPubMedGoogle Scholar
  160. 160.
    Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Publ Gr 15(7):397–408.  https://doi.org/10.1038/nrc3960 CrossRefGoogle Scholar
  161. 161.
    Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-??B signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24(4):835–845.  https://doi.org/10.1016/j.cellsig.2011.12.006 CrossRefPubMedGoogle Scholar
  162. 162.
    Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11(2):345–349.  https://doi.org/10.1111/j.1474-9726.2012.00795.x CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Coppé J-PP, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 5(2):e9188.  https://doi.org/10.1371/journal.pone.0009188 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132.  https://doi.org/10.1038/nbt1358 CrossRefPubMedGoogle Scholar
  165. 165.
    Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM et al (2013) Monitoring tumorigenesis and senescence in vivo with a p16ink4a-luciferase model. Cell 152(1-2):340–351.  https://doi.org/10.1016/j.cell.2012.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307CrossRefGoogle Scholar
  167. 167.
    Gruber HE, Ingram JA, Norton HJ, Hanley EN (2007) Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine (Phila Pa 1976) 32(3):321–327CrossRefGoogle Scholar
  168. 168.
    Geng Y-Q, Guan J-T, Xu X-H, Fu Y-C (2010) Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun 396(4):866–869.  https://doi.org/10.1016/j.bbrc.2010.05.011 CrossRefPubMedGoogle Scholar
  169. 169.
    Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321.  https://doi.org/10.1038/nature13013 CrossRefPubMedGoogle Scholar
  170. 170.
    Maskey RS, Kim MS, Baker DJ, Childs B, Malureanu LA, Jeganathan KB et al (2014) Spartan deficiency causes genomic instability and progeroid phenotypes. Nat Commun 5:5744.  https://doi.org/10.1038/ncomms6744 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660.  https://doi.org/10.1038/nature05529 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6(6):472–476.  https://doi.org/10.1038/nrc1884 CrossRefPubMedGoogle Scholar
  173. 173.
    Demaria M, Ohtani N, Youssef SAA, Rodier F, Toussaint W, Mitchell JRR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733.  https://doi.org/10.1016/j.devcel.2014.11.012 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Agostini A, Mondragõn L, Bernardos A, Martínez-Máñez R, Dolores Marcos M, Sancenõn F et al (2012) Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chemie Int Ed Engl 51(42):10556–10560.  https://doi.org/10.1002/anie.201204663 CrossRefGoogle Scholar
  175. 175.
    de Magalhães JP, Stevens M, Thornton D (2017) The business of anti-aging science. Trends Biotechnol 35(11):1062–1073.  https://doi.org/10.1016/j.tibtech.2017.07.004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Mario González-Meljem
    • 1
    Email author
  • Scott Haston
    • 2
  • Suchira Gallage
    • 3
  • Andrew J. Innes
    • 4
    • 5
    • 6
  1. 1.Department of Basic ResearchNational Institute of GeriatricsMexico CityMexico
  2. 2.Developmental Biology and Cancer Research ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
  3. 3.Division of Chronic Inflammation and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.MRC London Institute of Medical SciencesLondonUK
  5. 5.Institute of Clinical Sciences, Faculty of MedicineImperial College LondonLondonUK
  6. 6.Centre for Haematology, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations