Advertisement

Traumatic Brain Injury and Electroencephalogram Findings

  • Renato Anghinah
  • Jéssica Natuline Ianof
Chapter

Abstract

The diagnosis of most cognitive disorders is clinical, but the electroencephalography (EEG) plays a role in the evaluation, classification, and follow-up of these disorders, such as traumatic brain injury (TBI). In fact, EEG was the first clinical neurodiagnostic assessment that revealed abnormal brain function following a TBI, but its use as a technique for mapping injured brain areas has not been sufficiently explored.

Electrophysiological methods, such as quantitative electroencephalography (qEEG), are a very promising diagnostic tool. qEEG during the awake state in subjects with TBI have shown attenuated posterior alpha or focal irregular slow-wave activity or theta activity over the temporal region, increased delta power, and reduced alpha power. After TBI, the lasting consequences include cognitive deficits, post-traumatic stress disorder, mood changes, and post-traumatic epilepsy. The risk of seizures following injury and the development of post-traumatic epilepsy are well-documented consequences of TBI. Sleep disorders are a common complaint following TBI and worsens morbidity and long-term sequelae.

Keywords

Electroencephalogram (EEG) Electrical activity Quantitative EEG Brain waves Frequency bands Head injury Brain injury Traumatic brain injury (TBI) Seizure Sleep 

Notes

Conflict of Interest

There is no conflict of interest to declare.

References

  1. 1.
    Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr. 1929;87:527–43.CrossRefGoogle Scholar
  2. 2.
    Tudor M, Tudor L, Tudor KI. Hans Berger (1873-1941) – the history of electroencephalography. Acta Med Croatica. 2005;59(4):307–13.PubMedGoogle Scholar
  3. 3.
    Schacter DL, Crovitz HF. Memory function after closed head injury: a review of the quantitative research. Cortex. 1977;13:150–76.CrossRefGoogle Scholar
  4. 4.
    Thatcher RW, Walker RA, Gerson I, Geisler FH. EEG discriminant analyses of mild head trauma. Electroencephalogr Clin Neurophysiol. 1989;73:94–106.CrossRefGoogle Scholar
  5. 5.
    Dockree PM, Robertson IH. Electrophysiological markers of cognitive deficits in traumatic brain injury: a review. Int J Psychophysiol. 2011;82:53–60.CrossRefGoogle Scholar
  6. 6.
    Thatcher RW, North DM, Curtin RT, Walker RA, Biver CJ, et al. An EEG severity index of traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2001;13:77–87.CrossRefGoogle Scholar
  7. 7.
    Castriotta RJ, Wilde MC, Lai JM, Atanasov S, Masel BE, et al. Prevalence and consequences of sleep disorders in traumatic brain injury. J Clin Sleep Med. 2007;3:349–56.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Orff HJ, Ayalon L, Drummond SP. Traumatic brain injury and sleep disturbance: a review of current research. J Head Trauma Rehabil. 2009;24:155–65.CrossRefGoogle Scholar
  9. 9.
    Castriotta RJ, Murthy JN. Sleep disorders in patients with traumatic brain injury: a review. CNS Drugs. 2011;25:175–85.CrossRefGoogle Scholar
  10. 10.
    Parcell DL, Ponsford JL, Redman JR, Rajaratnam SM. Poor sleep quality and changes in objectively recorded sleep after traumatic brain injury: a preliminary study. Arch Phys Med Rehabil. 2008;89:843–50.CrossRefGoogle Scholar
  11. 11.
    Frieboes RM, Müller U, Murck H, von Cramon DY, Holsboer F, et al. Nocturnal hormone secretion and the sleep EEG in patients several months after traumatic brain injury. J Neuropsychiatry Clin Neurosci. 1999;11:354–60.CrossRefGoogle Scholar
  12. 12.
    Shekleton JA, Parcell DL, Redman JR, Phipps-Nelson J, Ponsford JL, et al. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology. 2010;74:1732–8.CrossRefGoogle Scholar
  13. 13.
    Rao V, Spiro J, Vaishnavi S, Rastogi P, Mielke M, et al. Prevalence and types of sleep disturbances acutely after traumatic brain injury. Brain Inj. 2008;22:381–6.CrossRefGoogle Scholar
  14. 14.
    Kotchoubey B, Lang S, Mezger G, et al. Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin Neurophysiol. 2005;116:2441–53.CrossRefGoogle Scholar
  15. 15.
    Arciniegas DB. Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. Int J Psychophysiol. 2011;82:41–52.CrossRefGoogle Scholar
  16. 16.
    Glaser MA, Sjaardema H. The value of the electroencephalogram in craniocerebral injuries. West J Surg Obstet Gynecol. 1940;48:684–96.Google Scholar
  17. 17.
    Jasper HH, Kershman J, Elvidge A. Electroencephalographic studies of injury to the head. Arch Neurol Psychiatr. 1940;44:328–48.CrossRefGoogle Scholar
  18. 18.
    Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American clinical neurophysiology society. Neurology. 1997;49(1):277–92.CrossRefGoogle Scholar
  19. 19.
    Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen A, Guérit JM, Hinrichs H, Ikeda A, Luccas FJ, Rappelsberger P. IFCN standards for digital recording of clinical EEG. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:11–4.PubMedGoogle Scholar
  20. 20.
    Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci. 2015;9:11.CrossRefGoogle Scholar
  21. 21.
    Berridge MJ, Rapp PE. A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol. 1979;81:217–79.PubMedGoogle Scholar
  22. 22.
    Penttonen M, Buzsáki G. Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst. 2003;2:145–15210.CrossRefGoogle Scholar
  23. 23.
    Harner R. Automatic EEG spike detection. Clin EEG Neurosci. 2009;40(4):262–70.CrossRefGoogle Scholar
  24. 24.
    McDowell K, Chin-Teng L, Oie KS, Tzyy-Ping J, Gordon S, Whitaker KW, et al. Real-world neuroimaging technologies. IEEE. 2013;1:131–49.Google Scholar
  25. 25.
    Bricolo A. Electroencephalography in neurotraumatology. Clin Electroencephalogr. 1976;7:184–97.CrossRefGoogle Scholar
  26. 26.
    Urakami Y. Relationship between, sleep spindles and clinical recovery in patients with traumatic brain injury: a simultaneous EEG and MEG study. Clin EEG Neurosci. 2012;43:39–47.CrossRefGoogle Scholar
  27. 27.
    Walker AE, Kollros JJ, Case TJ. The physiological basis of concussion. J Neurosurg. 1944;1:103–16.CrossRefGoogle Scholar
  28. 28.
    Shaw NA. The neurophysiology of concussion. Prog Neurobiol. 2002;67:281–344.CrossRefGoogle Scholar
  29. 29.
    Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol. 2005;116:2001–25.CrossRefGoogle Scholar
  30. 30.
    McCrea M, Prichep L, Powell MR, Chabot R, Barr WB. Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. J Head Trauma Rehabil. 2010;25:283–92.CrossRefGoogle Scholar
  31. 31.
    Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol. 2006;23(3):186–9.CrossRefGoogle Scholar
  32. 32.
    Modarres M, Kuzma NN, Kretzmer T, Pack AI, Lim MM. EEG slow waves in traumatic brain injury: convergent findings in mouse and man. Neurobiol Sleep Circadian Rhythms. 2016;1:1.CrossRefGoogle Scholar
  33. 33.
    Glaser MA, Sjaardema H. The value of the electroencephalograph in craniocerebral injuries. West J Surg. 1940;48:689–96.Google Scholar
  34. 34.
    Williams D. The electro-encephalogram in acute head injuries. J Neurol Psychiatry. 1941;4:107–30.CrossRefGoogle Scholar
  35. 35.
    Koufen H, Dichgans J. Frequency and course of posttraumatic EEG-abnormalities and their correlations with clinical symptoms a systematic follow up study in 344 adults. Fortschr Neurol Psychiatr Grenzgeb. 1978;46:165–77.PubMedGoogle Scholar
  36. 36.
    Dow RS, Ulett G, Raaf J. Electroencephalographic studies immediately following head injury. Am J Psychiatry. 1944;101:174–83.CrossRefGoogle Scholar
  37. 37.
    Geets W, Louette N. Early EEG in 300 cerebral concussions.( Fre). Rev Electroencephalogr Neurophysiol Clin. 1985;14:333–8.CrossRefGoogle Scholar
  38. 38.
    Meyer JS, Denny-Brown D. Studies of cerebral circulation in brain injury II Cerebral concussion. Electroencephalogr Clin Neurophysiol. 1955;7:529–44.CrossRefGoogle Scholar
  39. 39.
    Hayes RL, Katayama Y, Young HF, Dunbar JG. Coma associated with flaccidity produced by fluid-percussion concussion in the cat I: is it due to depression of activity within the brainstem reticular formation? Brain Inj. 1988;2:31–49.CrossRefGoogle Scholar
  40. 40.
    Tebano MT, Cameroni M, Gallozzi G, Loizzo A, Palazzino G, Pezzini G, Ricci GF. EEG spectral analysis after minor head injury in man. Electroencephalogr Clin Neurophysiol. 1988;70:185–9.CrossRefGoogle Scholar
  41. 41.
    McClelland RJ, Fenton GW, Rutherford W. The postconcussional syndrome revisited. J R Soc Med. 1994;87:508–10.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fenton G. The postconcussional syndrome reappraised. Clin Electroencephalogr. 1996;27:174–82.PubMedGoogle Scholar
  43. 43.
    Gosselin N, Lassonde M, Petit D, Leclerc S, Mongrain V, Collie A, Montplaisir J. Sleep following sport-related concussions. Sleep Med. 2009;10:35–46.CrossRefGoogle Scholar
  44. 44.
    Watson MR, Fenton GW, McClelland RJ, Lumsden J, Headley M, Rutherford WH. The post-concussional state neurophysiological aspects. Br J Psychiatry. 1995;167:514–21.CrossRefGoogle Scholar
  45. 45.
    Chen XP, Tao LY, Chen AC. Electroencephalogram and evoked potential parameters examined in Chinese mild head injury patients for forensic medicine. Neurosci Bull. 2006;22:165–70.PubMedGoogle Scholar
  46. 46.
    Lewine JD, Davis JT, Bigler ED, Thoma R, Hill D, Funke M. Objective documentation of traumatic brain injury subsequent to mild head trauma multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil. 2007;22:141–55.CrossRefGoogle Scholar
  47. 47.
    Kanda PAM, Anghinah R, Schmidt MT, Jorge MS. The clinical use of quantitative EEG in cognitive disorders. Dement Neuropsychol. 2009;3(3):195–203.CrossRefGoogle Scholar
  48. 48.
    Zhang X, van Drongelen W, Hecox K, Towle V, Frim D, McGee A, et al. High-resolution EEG: cortical potential imaging of interictal spikes. Clin Neurophysiol. 2003;114:1963–73.CrossRefGoogle Scholar
  49. 49.
    Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49965.CrossRefGoogle Scholar
  50. 50.
    Babiloni C, Frisoni G, Pievani M, Vecchio F, Lizio R, Buttiglione M, et al. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. NeuroImage. 2009;44(1):123–35.CrossRefGoogle Scholar
  51. 51.
    Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sloreta): technical details. Methods Find Exp Clin Pharmacol. 2002;24.(Suppl D:5–12.PubMedGoogle Scholar
  52. 52.
    Pascual-Marqui R. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. 2007.Google Scholar
  53. 53.
    Canuet L, Tellado I, Couceiro V, Fraile C, Fernandez-Novoa L, Ishii R, et al. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study. PLoS One. 2012;7:e46289.CrossRefGoogle Scholar
  54. 54.
    Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J. Barroso y Martin JM, Dominguez-Morales MR. brain function in the minimally conscious state: a quantitative neurophysiological study. Clin Neurophysiol. 2008;119(7):1506–14.CrossRefGoogle Scholar
  55. 55.
    Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011;2011:765923.CrossRefGoogle Scholar
  56. 56.
    Corradini PL, Persinger MA. Standardized low resolution electromagnetic tomography (sLORETA) is a sensitive Indicator of protracted neuropsychological impairments following “mild” (concussive) traumatic brain injury. J Neurol Neurophysiol. 2013;4:176.Google Scholar
  57. 57.
    Ledwidge PS, Molfese DL. Long-term effects of concussion on electrophysiological indices of attention in varsity college athletes: an event-related potential and standardized low-resolution brain electromagnetic tomography approach. J Neurotrauma. 2016;33(23):2081–90.CrossRefGoogle Scholar
  58. 58.
    Ianof JN, Fraga FJ, Ferreira LA, et al. Comparative analysis of the electroencephalogram in patients with Alzheimer’s disease, diffuse axonal injury patients and healthy controls using LORETA analysis. Dement Neuropsychol. 2017;11(2):176–85.CrossRefGoogle Scholar
  59. 59.
    Fisher RS, van Emde BW, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:470–2.CrossRefGoogle Scholar
  60. 60.
    Hauser WA, Annegers JF, Kurland LT. Prevalence of epilepsy in Rochester, Minnesota: 1940–1980. Epilepsia. 1991;32:429–45.CrossRefGoogle Scholar
  61. 61.
    Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109(2):506–23.CrossRefGoogle Scholar
  62. 62.
    Frey LC. Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia. 2003;44(Suppl 10):11–7. Thorough epidemiological review of post-traumatic epilepsy (PTE) that provides important information on incidence and risk factors for developing PTE in both civilian and military populations, as well as the working definitions involved in PTECrossRefGoogle Scholar
  63. 63.
    Jennett B. Early traumatic epilepsy. Incidence and significance after nonmissile head injuries. Arch Neurol. 1974;30(5):394–8.CrossRefGoogle Scholar
  64. 64.
    Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1998;40:584–9.CrossRefGoogle Scholar
  65. 65.
    Haltiner AM, Temkin NR, Dikmen SS. Risk of seizure recurrence after the first late posttraumatic seizure. Arch Phys Med Rehabil. 1997;78:835–40.CrossRefGoogle Scholar
  66. 66.
    Angeleri F, Majkowski J, Cacchio G, et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia. 1999;40:1222–30.CrossRefGoogle Scholar
  67. 67.
    Urakami Y. Electrophysiologic evaluation of diffuse axonal injury after traumatic brain injury. J Neurol Neurophysiol. 2013;4:157.CrossRefGoogle Scholar
  68. 68.
    Rao V, Bergey A, Hill H, et al. Sleep disturbance after mild traumatic brain injury: indicator of injury? J Neuropsychiatry Clin Neurosci. 2011;23:201.CrossRefGoogle Scholar
  69. 69.
    Khoury S, Chouchou F, Amzica F, et al. Rapid EEG activity during sleep dominates in mild traumatic brain injury patients with acute pain. J Neurotrauma. 2013;30:633.CrossRefGoogle Scholar
  70. 70.
    Feige B, Baglioni C, Spiegelhalder K, et al. The microstructure of sleep in primary insomnia: an overview and extension. Int J Psychophysiol. 2013;89:171.CrossRefGoogle Scholar
  71. 71.
    Sandsmark DK, Kumar MA, Woodward CS, et al. Sleep features on continuous electroencephalography predict rehabilitation outcomes after severe traumatic brain injury. J Head Trauma Rehabil. 2016;31:101.CrossRefGoogle Scholar
  72. 72.
    Ponsford JL, Ziino C, Parcell DL, Shekleton JA, Roper M, et al. Fatigue and sleep disturbance following traumatic brain injury--their nature, causes, and potential treatments. J Head Trauma Rehabil. 2012;27:224–33.CrossRefGoogle Scholar
  73. 73.
    Harada M, Minami R, Hattori E, et al. Sleep in brain-damaged patients. An all night sleep study of 105 cases. Kumamoto Med J. 1976;29:110.PubMedGoogle Scholar
  74. 74.
    Imbach LL, Valko PO, Li T, Maric A, Symeonidou ER, Stover JF, Bassetti CL, Mica L, Werth E, Baumann CR. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial. Brain. 2015;138(Pt 3):726–35.CrossRefGoogle Scholar
  75. 75.
    Nakase-Richardson R, Yablon SA, Sherer M. Prospective comparison of acute confusion severity with duration of post-traumatic amnesia in predicting employment outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2007;78(8):872–6.CrossRefGoogle Scholar
  76. 76.
    Nakase-Richardson R, Sherer M, Barnett SD, Yablon SA, Evans CC, Kretzmer T, Schwartz DJ, Modarres M. Prospective evaluation of the nature, course, and impact of acute sleep abnormality after traumatic brain injury. Arch Phys Med Rehabil. 2013;94(5):875–82.CrossRefGoogle Scholar
  77. 77.
    Sherer M, Yablon SA, Nakase-Richardson R, Nick TG. Effect of severity of post-traumatic confusion and its constituent symptoms on outcome after traumatic brain injury. Arch Phys Med Rehabil. 2008;89(1):42–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Renato Anghinah
    • 1
    • 2
  • Jéssica Natuline Ianof
    • 1
  1. 1.Department of Neurology – Cognitive Rehabilitation after TBIClinics Hospital – School of Medicine – University of São PauloSão PauloBrazil
  2. 2.Center of Excellence in Neurology – Americas Serviços MédicosSão PauloBrazil

Personalised recommendations