Phantom Limb Pain

  • Jens FoellEmail author
  • Herta Flor


Chronic phantom limb pain is a common occurrence after the amputation of an extremity, often causing a considerable level of suffering for years or decades after an accidental injury or an operation. Due to its intractable nature and multilayered working mechanisms, it has proven to be a challenge for both practitioners and researchers. Studies have linked this type of chronic pain to alterations in the peripheral nervous system, the spinal cord, the brainstem, the thalamus, and the cortex. Mechanisms that contribute to the elicitation and perpetuation of chronic phantom limb pain may be the formation of neuroma, central sensitization, cortical reorganization, and pain memory. The tendency of developing phantom limb pain after limb amputation seems to be connected to perceptual illusions, such as integrating the mirror image of a limb or a rubber hand into one’s own body representation. These findings have led to novel forms of treatment, such as mirror therapy, imagery training, or the application of virtual reality. Other promising treatments include pharmacological approaches before and after amputation, sensory discrimination, central stimulation, the use of myoelectric prostheses, and the combination of medication and behavioral approaches.



The completion of this chapter was supported by European Research Council Advanced Grant PHANTOMMIND awarded to HF.


  1. Appenzeller, O., & Bicknell, J. M. (1969). Effects of nervous system lesions on phantom experience in amputees. Neurology, 19, 141–146.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Armel, K. C., & Ramachandran, V. S. (2003). Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London B Biological Sciences, 270, 1499–1506.CrossRefGoogle Scholar
  3. Baillie, J. K., & Power, I. (2006). The mechanism of action of gabapentin in neuropathic pain. Current Opinion in Investigational Drugs, 7, 33–39.PubMedPubMedCentralGoogle Scholar
  4. Baron, R., & Maier, C. (1995). Phantom limb pain: Are cutaneous nociceptors and spinothalamic neurons involved in the signaling and maintenance of spontaneous and touch-evoked pain? A case report. Pain, 60, 223–228.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bekrater-Bodmann, R., Foell, J., Diers, M., & Flor, H. (2012). The perceptual and neuronal stability of the rubber hand illusion across contexts and over time. Brain Research, 1452, 130–139.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bekrater-Bodmann, R., Schredl, M., Diers, M., Reinhard, I., Foell, J., Trojan, J., et al. (2015). Post-amputation pain is associated with the recall of an impaired body representation in dreams—Results from a nation-wide survey on limb amputees. PloS one, 10, e0119552.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Birbaumer, N., Lutzenberger, W., Montoya, P., Larbig, W., Unertl, K., Töpfner, S., Grodd, W., Taub, E., & Flor, H. (1997). Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. The Journal of Neuroscience, 17, 5503–5508.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Blankenburg, F., Ruff, C. C., Deichmann, R., Rees, G., & Driver, J. (2006). The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biology, 4, e69. Scholar
  9. Bolognini, N., Olgiati, E., Maravita, A., Ferraro, F., & Fregni, F. (2013). Motor and parietal cortex stimulation for phantom limb pain and sensations. Pain, 154, 1274–1280.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Calford, M. B., & Tweedale, R. (1991). C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proceedings of the Biological Sciences, 243, 269–275.CrossRefGoogle Scholar
  12. Chabal, C., Jacobson, L., Russell, L. C., & Burchiel, K. J. (1992). Pain response to peri-neuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain, 49, 9–12.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chan, B. L., Witt, R., Charrow, A. P., Magee, A., Howard, R., Pasquina, P. F., Heilman, K. M., & Tsao, J. W. (2007). Mirror therapy for phantom limb pain. The New England Journal of Medicine, 357, 2206–2207.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen, Y., Michaelis, M., Jänig, W., & Devor, M. (1996). Adrenoreceptor subtype mediating sympathetic sensory coupling in injured sensory neurons. Journal of Neurophysiology, 76, 3721–3730.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen, L. M., Friedman, R. M., & Roe, A. W. (2003). Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science, 302, 881–885.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Churchill, J. D., Muja, N., Myers, W. A., Besheer, J., & Garraghty, P. E. (1998). Somatotopic consolidation: A third phase of reorganization after peripheral nerve injury in adult squirrel monkeys. Experimental Brain Research, 118, 189–196.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cole, J., Crowle, S., Austwick, G., & Slater, D. H. (2009). Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disability and Rehabilitation, 31, 846–854.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Coull, J. A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M. W., & De Koninck, Y. (2005). BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 438, 1017–1021.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Davis, K. D., Kiss, Z. H., Luo, L., Tasker, R. R., Lozano, A. M., & Dostrovsky, J. O. (1998). Phantom sensations generated by thalamic microstimulation. Nature, 391, 385–387.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Devor, M. (2005a). In M. Koltzenburg & S. B. McMahon (Eds.), Response of nerres to injury in relation to neuropathic pain. Wall and Melzack’s textbook of pain (pp. 905–927). Amsterdam: Elsevier.Google Scholar
  21. Devor, M. (2005b). Sodium channels and mechanisms of neuropathic pain. Pain, 7, 3–12.CrossRefGoogle Scholar
  22. Devor, M. (2006). Sodium channels and mechanisms of neuropathic pain. The Journal of Pain, 7, S3–S12.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Devor, M., & Wall, P. D. (1978). Reorganisation of spinal cord sensory map after peripheral nerve injury. Nature, 276, 75–76.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Diers, M., Kamping, S., Kirsch, P., Rance, M., Bekrater-Bodmann, R., Foell, J., et al. (2015). Illusion-related brain activations: A new virtual reality mirror box system for use during functional magnetic resonance imaging. Brain Research, 1594, 173–182.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Doetsch, G. S. (1998). Perceptual significance of somatosensory cortical reorganization following peripheral denervation. Neuroreport, 9, 29–35.CrossRefGoogle Scholar
  26. Donovan, K. A., Thompson, L. M. A., & Jacobsen, P. B. (2013). Pain, depression and anxiety in cancer. In R. J. Moore (Ed.), Handbook of pain and palliative care: Biobehavioral approaches for the life course. New York: Springer.Google Scholar
  27. Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305, 875–877.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ehrsson, H. H., Holmes, N. P., & Passingham, R. E. (2005). Touching a rubber hand: Feeling of body ownership is associated with activity in multisensory brain areas. The Journal of Neuroscience, 25, 10564–10573.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eichenberger, U., Neff, F., Sveticic, G., Björgo, S., Petersen-Felix, S., Arendt-Nielsen, L., & Curatolo, M. (2008). Chronic phantom limb pain: The effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesthesia and Analgesia, 106, 1265–1273.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Elbert, T., Sterr, A., Flor, H., Rockstroh, B., Knecht, S., Pantev, C., Wienbruch, C., & Taub, E. (1997). Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans. Experimental Brain Research, 117, 161–164.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ephraim, P. L., Wegener, S. T., MacKenzie, E. J., Dillingham, T. R., & Pezzin, L. E. (2005). Phantom pain, residual limb pain, and back pain in amputees: Results of a national survey. Archives of Physical Medicine and Rehabilitation, 86, 1910–1919.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ergenzinger, E. R., Glasier, M. M., Hahm, J. O., & Pons, T. P. (1998). Cortically induced thalamic plasticity in the primate somatosensory system. Nature Neuroscience, 1, 226–229.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Finnerup, N. B., Otto, M., Jensen, T. S., & Sindrup, S. H. (2007). An evidence-based algorithm for the treatment of neuropathic pain. Medscape General Medicine, 9, 36.PubMedPubMedCentralGoogle Scholar
  34. Finnerup, N. B., Norrbrink, C., Fuglsang-Frederiksen, A., Terkelsen, A. J., Hojlund, A. P., & Jensen, T. S. (2010). Pain, referred sensations, and involuntary muscle movements in brachial plexus injury. Acta Neurologica Scandinavica, 121, 320–327.PubMedCrossRefGoogle Scholar
  35. Flor, H. (2008). Maladaptive plasticity, memory for pain and phantom limb pain: Review and suggestions for new therapies. Expert Review of Neurotherapeutics, 8, 809–818.PubMedCrossRefGoogle Scholar
  36. Flor, H., & Diers, M. (2007). Limitations of pharmacotherapy: Behavioral approaches to chronic pain. Handbook of Experimental Pharmacology, 177, 415–427.CrossRefGoogle Scholar
  37. Flor, H., Elbert, T., Wienbruch, C., Pantev, C., Knecht, S., Birbaumer, N., Larbig, W., & Taub, E. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375, 482–484.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Flor, H., Braun, C., Elbert, T., & Birbaumer, N. (1997). Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neuroscience Letters, 224, 5–8.PubMedCrossRefGoogle Scholar
  39. Flor, H., Mühlnickel, W., Karl, A., Denke, C., Grüsser, S., Kurth, R., & Taub, E. (2000). A neural substrate for nonpainful phantom limb phenomena. Neuroreport, 11, 1407–1411.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Flor, H., Denke, C., Schaefer, M., & Grüsser, S. (2001). Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. The Lancet, 357, 1763–1764.CrossRefGoogle Scholar
  41. Flor, H., Devor, M., & Jensen, T. (2003). Phantom limb pain: Causes and cures. In J. Dostrovsky, M. Koltzenburg, & D. Carr (Eds.), Proceedings of the 10th world congress on pain (pp. 725–738). Seattle: IASP Press.Google Scholar
  42. Florence, S. L., Taub, H. B., & Kaas, J. H. (1998). Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science, 282, 1117–1121.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Foell, J., Bekrater-Bodmann, R., Diers, M., & Flor, H. (2014). Mirror therapy for phantom limb pain: Brain changes and the role of body representation. European Journal of Pain, 18, 729–739.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fregni, F., Boggio, P. S., Lima, M. C., Ferreira, M. J. L., Wagner, T., Rigonatti, S. P., Castro, A. W., Souza, D. R., Riberto, M., Freedman, S. D., Nitsche, M. A., & Pascual-Leone, A. (2006). A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain, 122, 197–209.PubMedCrossRefGoogle Scholar
  45. Fregni, F., Freedman, S., & Pascual-Leone, A. (2007). Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurology, 6, 188–191.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fried, K., Govrin-Lippman, R., Rosenthal, F., Ellisman, M. H., & Devor, M. (1991). Ultrastructure of afferent axon endings in a neuroma. Journal of Neurocytology, 20, 682–701.PubMedCrossRefGoogle Scholar
  47. Giraux, P., & Sirigu, A. (2003). Illusory movements of the paralyzed limb restore motor cortex activity. NeuroImage, 20, 107–111.CrossRefGoogle Scholar
  48. Goldberg, D. (2016). “What they think of the causes of so much suffering”: S. Weir Mitchell, John Kearsley Mitchell, and ideas about phantom limb pain in late nineteenth-century America. Spontaneous Generations: A Journal for the History and Philosophy of Science, 8, 27–54.Google Scholar
  49. Gorodetskaya, N., Constantin, C., & Jänig, W. (2003). Ectopic activity in cutaneous regenerating afferent nerve fibers following nerve lesion in the rat. The European Journal of Neuroscience, 18, 2487–2497.PubMedCrossRefGoogle Scholar
  50. Granata, G., Vecchio, F., Miraglia, F., Raspopovic, S., Petrini, F., Micera, S., & Rossini, P. M. (2016). ID 287–Sensory feedback generated by intraneural electrical stimulation of peripheral nerves drives cortical reorganization and relieves phantom limb pain: A case study. Clinical Neurophysiology, 127, e63.CrossRefGoogle Scholar
  51. Grüsser, S. M., Winter, C., Mühlnickel, W., Denke, C., Karl, A., Villringer, K., & Flor, H. (2001). The relationship of perceptual phenomena and cortical reorganization in upper extremity amputees. Neurosciences, 102, 263–272.CrossRefGoogle Scholar
  52. Grüsser, S. M., Mühlnickel, W., Schaefer, M., Villringer, K., Christmann, C., Koeppe, C., & Flor, H. (2004). Remote activation of referred phantom sensation and cortical reorganization in human upper extremity amputees. Experimental Brain Research, 154, 97–102.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Halligan, P. W., Marshall, J. C., & Wade, D. T. (1994). Sensory disorganization and perceptual plasticity after limb amputation: A follow-up study. Neuroreport, 27, 1341–1345.Google Scholar
  54. Hanley, M. A., Jensen, M. P., Smith, D. G., Ehde, D. M., Edwards, W. T., & Robinson, L. R. (2007). Preamputation pain and acute pain predict chronic pain after lower extremity amputation. The Journal of Pain, 8, 102–109.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Harvie, D., & Moseley, G. L. (2014). Exploring changes in the brain associated with recovery from phantom limb pain–the potential importance of telescoping. European Journal of Pain, 18, 601–602.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.CrossRefGoogle Scholar
  57. Hunter, J. P., Katz, J., & Davis, K. D. (2003). The effect of tactile and visual sensory inputs on phantom limb awareness. Brain, 126, 579–589.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hunter, J. P., Katz, J., & Davis, K. D. (2008). Stability of phantom limb phenomena after upper limb amputation: A longitudinal study. Neurosciences, 156, 939–949.CrossRefGoogle Scholar
  59. Huse, E., Larbig, W., Flor, H., & Birbaumer, N. (2008). The effects of opioids on phantom limb pain and cortical reorganization. Pain, 90, 47–55.CrossRefGoogle Scholar
  60. Jain, N., Qi, H., Collins, C. E., & Kaas, J. H. (2008). Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. The Journal of Neuroscience, 28, 11042–11060.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kaas, J. H., & Florence, S. L. (1997). Mechanisms of reorganization in sensory systems of primates after peripheral nerve injury. Advances in Neurology, 73, 147–158.PubMedPubMedCentralGoogle Scholar
  62. Karl, A., Diers, M., & Flor, H. (2004). P300-amplitudes in upper limb amputees with and without phantom limb pain in a visual oddball paradigm. Pain, 110, 40–46.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Katz, J., & Melzack, R. (1990). Pain “memories” in phantom limbs: Review and clinical observations. Pain, 43, 319–336.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Keil, G. (1990). So-called initial description of phantom pain by Ambroisé Paré. “Chose digne d’admiration et quasi incredible”: the “douleur ès parties mortes et amputées”. Fortschritte der Medizin, 108, 62–66.PubMedPubMedCentralGoogle Scholar
  65. Knotkova, H., & Cruciani, R. A. (2010). Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods in Molecular Biology, 617, 505–515.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lotze, M., Grodd, W., Birbaumer, N., Erb, M., Huse, E., & Flor, H. (1999). Does use of a myoelectric prosthesis reduce cortical reorganization and phantom limb pain? Nature Neuroscience, 2, 501–502.PubMedCrossRefPubMedCentralGoogle Scholar
  67. MacIver, K., Lloyd, D. M., Kelly, S., Roberts, N., & Nurmikko, T. (2008). Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain, 131, 2181–2191.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Maier, C., Dertwinkel, R., Mansourian, N., Hosbach, I., Schwenkreis, P., Senne, I., Skipka, G., Zenz, M., & Tegenthoff, M. (2003). Efficacy of the NMDA-receptor antagonist memantine in patients with chronic phantom limb pain – Results of a randomized double-blinded, placebo-controlled trial. Pain, 103, 277–283.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Makin, T. R., Scholz, J., Filippini, N., Slater, D. H., Tracey, I., & Johansen-Berg, H. (2013). Phantom pain is associated with preserved structure and function in the former hand area. Nature Communications, 4, 1570.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marbach, J. J., & Raphael, K. G. (2000). Phantom tooth pain: A new look at an old dilemma. Pain Medicine, 1, 68–77.PubMedCrossRefPubMedCentralGoogle Scholar
  71. McCabe, C. S., Haigh, R. C., Halligan, P. W., & Blake, D. R. (2005). Simulating sensory-motor incongruence in healthy volunteers: Implications for a cortical model of pain. Rheumatology, 44, 509–516.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Melzack, R., & Loeser, J. D. (1978). Phantom body pain in paraplegics: Evidence for a “central pattern generating mechanism” for pain. Pain, 4, 195–210.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., & Zook, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of Comparative Neurology, 224, 591–605.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Milde, C., Rance, M., Kirsch, P., Trojan, J., Fuchs, X., Foell, J., et al. (2015). Do mirror glasses have the same effect on brain activity as a mirror box? Evidence from a functional magnetic resonance imaging study with healthy subjects. PloS One, 10, e0127694.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Montoya, P., Ritter, K., Huse, E., Larbig, W., Braun, C., Töpfner, S., Lutzenberger, W., Grodd, W., Flor, H., & Birbaumer, N. (1998). The cortical somatotopic map and phantom phenomena in subjects with congenital limb atrophy and traumatic amputees with phantom limb pain. The European Journal of Neuroscience, 10, 1095–1102.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Murray, C. D., Pettifer, S., Howard, T., Patchick, E. L., Caillette, F., Kulkarni, J., & Bamford, C. (2007). The treatment of phantom limb pain using immersive virtual reality: Three case studies. Disability and Rehabilitation, 29, 1465–1469.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nguyen, J. P., Lefaucheur, J. P., Le Guerinel, C., Fontaine, D., Nakano, N., Sakka, L., Eizenbaum, J. F., Pollin, B., & Keravel, Y. (2000). Treatment of central and neuropathic facial pain by chronic stimulation of the motor cortex: Value of neuronavigation guidance systems for the localization of the motor cortex. Neurochirurgie, 46, 483–491.PubMedPubMedCentralGoogle Scholar
  78. Nikolajsen, L. J., & Jensen, T. S. (2005). In M. Koltzenburg & S. B. McMahon (Eds.), Phanton limb. Wall and Melzack’s textbook of pain (pp. 961–971). Amsterdam: Elsevier.Google Scholar
  79. Nikolajsen, L., Ilkjaer, S., Kroner, K., Christensen, J. H., & Jensen, T. S. (1997). The influence of preamputation pain on postamputation stump and phantom pain. Pain, 72, 393–405.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nikolajsen, L., Ilkjaer, S., & Jensen, T. S. (2000). Relationship between mechanical sensitivity and postamputation pain: A prospective study. European Journal of Pain, 4, 327–334.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nikolajsen, L. J., Finnerup, N. B., Kramp, S., Vimtrup, A. S., Keller, J., & Jensen, T. S. (2006). A randomized study of the effects of gabapentin on postamputation pain. Anesthesiology, 105, 1008–1015.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ortiz-Catalan, M., Sander, N., Kristoffersen, M. B., Håkansson, B., & Brånemark, R. (2014). Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: A case study of a chronic PLP patient. Frontiers in Neuroscience, 8, 24.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ortiz-Catalan, M., Guðmundsdóttir, R. A., Kristoffersen, M. B., Zepeda-Echavarria, A., Caine-Winterberger, K., Kulbacka-Ortiz, K., et al. (2016). Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet, 388(10062), 2885–2894. Epub 2016 Dec 2.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pons, T. P., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., Taub, E., & Mishkin, M. (1991). Massive cortical reorganization after sensory deafferentation in adult macaques. Science, 252, 1857–1860.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Price, E. H. (2006). A critical review of congenital phantom limb cases and a developmental theory for the basis of body image. Consciousness and Cognition, 15, 310–322.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Raichle, K. A., Hanley, M. A., Molton, I., Kadel, N. J., Campbell, K., Phelps, E., Ehde, D., & Smith, D. G. (2008). Prosthesis use in persons with lower- and upper-limb amputation. Journal of Rehabilitation Research and Development, 45, 961–972.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ramachandran, V. S., & Rogers-Ramachandran, D. (1996). Synesthesia in phantom limbs induced with mirrors. Proceedings of the Royal Society of London B Biological Sciences, 263, 377–386.CrossRefGoogle Scholar
  88. Ramachandran, V. S., Stewart, M., & Rogers-Ramachandran, D. C. (1992). Perceptual correlates of massive cortical reorganization. Neuroreport, 3, 583–586.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Rossini, P. M., Micera, S., Benvenuto, A., Carpaneto, J., Cavallo, G., Citi, L., Cipriani, C., Denaro, L., Denaro, V., Di Pino, G., Ferreri, F., Guglielmelli, E., Hoffmann, K. P., Raspopovic, S., Rigosa, J., Rossini, L., Tombini, M., & Dario, P. (2010). Double nerve intraneural interface implant on a human amputee for robotic hand control. Clinical Neurophysiology, 121, 777–783.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rothemund, Y., Grüsser, S. M., Liebeskind, U., Schlag, P. M., & Flor, H. (2004). Phantom phenomena in mastectomized patients and their relation to chronic and acute pre-mastectomy pain. Pain, 107, 140–146.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Schley, M., Topfner, S., Wiech, K., Schaller, H. E., Konrad, C. J., Schmelz, M., & Birbaumer, N. (2007). Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. European Journal of Pain, 11, 299–308.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Schmidt, A. P., Takahashi, M. E., & de Paula Posso, I. (2005). Phantom limb pain induced by spinal anesthesia. Clinics, 60, 263–264.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Sherman, R. A., Sherman, C. J., & Gall, N. G. (1980). A survey of current phantom limb pain treatment in the United States. Pain, 8, 85–99.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sherman, R. A., Davis, G. D., & Wong, M. F. (1997). Behavioral treatment of exercise-induced urinary incontinence among female soldiers. Military Medicine, 162, 690–694.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Spiegel, D. R., Lappinen, E., & Gottlieb, M. (2010). A presumed case of phantom limb pain treated successfully with duloxetine and pregabalin. General Hospital Psychiatry, 32, 228.PubMedPubMedCentralGoogle Scholar
  96. Torsney, C., & MacDermott, A. B. (2006). Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. The Journal of Neuroscience, 26, 1833–1843.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Trojan, J., Diers, M., Fuchs, X., Bach, F., Bekrater-Bodmann, R., Foell, J., et al. (2014). An augmented reality home-training system based on the mirror training and imagery approach. Behavior Research Methods, 46, 634–640.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia, 48, 703–712.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ueda, H. (2006). Molecular mechanisms of neuropathic painphenotypic switch and initiation mechanisms. Pharmacology and Therapeutics, 109, 57–77.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Vaso, A., Adahan, H. M., Gjika, A., Zahaj, S., Zhurda, T., Vyshka, G., & Devor, M. (2014). Peripheral nervous system origin of phantom limb pain. Pain, 155, 1384–1391.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wang, S., Lim, G., Yang, L., Zeng, Q., Sung, B., Jeevendra Martyn, J. A., & Mao, J. (2005). A rat model of unilateral hindpaw burn injury: Slowly developing rightwards shift of the morphine dose-response curve. Pain, 116, 87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Weiss, T., Miltner, W. H. R., Adler, T., Bruckner, L., & Taub, E. (1999). Decrease in phantom limb pain associated with prosthesis-induced increased use of an amputation stump in humans. Neuroscience Letters, 272, 131–134.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Wiech, K., Töpfner, S., Kiefer, T., Preissl, H., Braun, C., Haerle, M., et al. (2001). Prevention of phantom limb pain and cortical reorganization in the early phase after amputation in humans. Society for Neuroscience Abstracts, 28, 163–169.Google Scholar
  104. Wiesenfeld-Hallin, Z., Xu, X. J., & Hökfelt, T. (2002). The role of spinal cholecystokinin in chronic pain states. Pharmacology and Toxicology, 91, 398–403.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wilkins, K. L., McGrath, P. J., Finley, G. A., & Katz, J. (1998). Phantom limb sensations and phantom limb pain in child and adolescent amputees. Pain, 78, 7–12.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Woolf, C. J. (2004). Dissecting out mechanisms responsible for peripheral neuropathic pain: Implications for diagnosis and therapy. Life Sciences, 74, 2605–2610.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Woolf, C. J., & Chong, M. S. (1993). Preemptive analgesia – Treating postoperative pain by preventing the establishment of central sensitization. Anesthesia and Analgesia, 77, 362–379.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Woolf, C. J., & Salter, M. W. (2005). In M. Koltzenburg & S. B. McMahon (Eds.), Plasticity and pain: Role of the dorsal horn. Wall and Melzack’s textbook of pain (pp. 91–105). Amsterdam: Elsevier.Google Scholar
  109. Zhang, L., Zhang, Y., & Zhao, Z. (2005). Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus. The European Journal of Neuroscience, 22, 1141–1148.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyFlorida State UniversityTallahasseeUSA
  2. 2.Department of Cognitive and Clinical Neuroscience, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany

Personalised recommendations