Vascular Alterations in Mental Disorders: Focus in Angiotensin II Role

  • Leticia Ester Delgado-Marín
  • Osvaldo Martin Basmadjian
  • Victoria Belén Occhieppo
  • Natalia Andrea Marchese
  • Claudia Bregonzio
  • Gustavo Carlos Baiardi


Mental disorders have high prevalence and long duration, affecting the quality of life and generating elevated economic costs in public health. Approximately 25% of population worldwide will develop any mental illness at some moment of its lifetime. These disorders are the result of complex processes involving the interaction of many pathological changes. Although, each psychiatric disease has well-defined characteristics, some of their neurobiological processes, like inflammation and vascular alterations, seem to be common. Since microvasculature is involved in essential functions as oxygen delivery, waste product removal, and transvascular exchange, any brain vessel alteration could promote a pathological state. In this sense, capillary ultrastructural abnormalities, deficient perfusion, and blood-brain barrier disruption have been described in schizophrenia, depression, and Parkinson’s and Alzheimer’s diseases. These vascular dysfunctions could be related to angiogenic factor deregulations. The abovementioned evidences point out to evaluate the vasculature as a future pharmacological target for the treatment of mental disorders. Among the several factors involved in the regulation of angiogenesis, this chapter will focus on the upstream angiogenic mediator Angiotensin II. This peptide is produced at peripheral and brain level and exerts its principal effects acting through AT1 receptors. Considering that the available treatments for mental illnesses have low efficacy and high incidence of side effects, new pharmacological tools become necessary. The present chapter will be focused in the evidences that support Angiotensin II as a key factor in the understanding and therapy of these pathologies.


Schizophrenia Parkinson’s disease Alzheimer’s disease Depression Angiotensin II AT1-receptor Angiogenesis 


  1. 1.
    Tata M, Ruhrberg C, Fantin A. Vascularisation of the central nervous system. Mech Dev [Internet]. 2015;138(Pt 1):26–36. Available from: Google Scholar
  2. 2.
    Barr ML, Kiernan JA, Alejandro SRJ. Barr: el sistema nervioso humano: un punto de vista anatm̤ico [Internet]. Mexico: McGraw-Hill; 2006. Available from: Scholar
  3. 3.
  4. 4.
    del Zoppo GJ. Microvascular responses to cerebral ischemia/inflammation. Ann N Y Acad Sci [Internet]. 1997;823:132–47. Available from: Scholar
  5. 5.
    Cox SB, Woolsey TA, Rovainen CM. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab [Internet]. 1993;13(6):899–913. Available from: Scholar
  6. 6.
    Erinjeri JP, Woolsey TA. Spatial integration of vascular changes with neural activity in mouse cortex. J Cereb Blood Flow Metab [Internet]. 2002;22(3):353–60. Available from: Scholar
  7. 7.
    Ribatti D, Crivellato E. “Sprouting angiogenesis”, a reappraisal. Dev Biol [Internet]. 2012;372(2):157–65. Available from: Google Scholar
  8. 8.
    Shepro D. Microvascular research: [biology and pathology]. [Internet]. Elsevier Academic Press; 2006. Available from:
  9. 9.
    Secomb TW, Pries AR. Microvascular plasticity: angiogenesis in health and disease – preface. Microcirculation [Internet]. 2016;23(2):93–4. Available from: Scholar
  10. 10.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. [Internet]. 2011;473(7347):298–307. Available from: Scholar
  11. 11.
    Simons M. Angiogenesis: where do we stand now? Circulation [Internet]. 2005;111(12):1556–66. Available from; Scholar
  12. 12.
    Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov [Internet]. 2009;8(3):235–53. Available from: Scholar
  13. 13.
    Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec [Internet]. 1986;216(2):154–64. Available from: Scholar
  14. 14.
    Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn [Internet]. 2002;224(4):391–402. Available from: Scholar
  15. 15.
    Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Phys Lung Cell Mol Phys [Internet]. 2001;281(3):L529–33. Available from: Scholar
  16. 16.
    Oh SJ, Kurz H, Christ B, Wilting J. Platelet-derived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts in vivo. Histochem Cell Biol [Internet]. 1998;109(4):349–57. Available from: Scholar
  17. 17.
    Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci [Internet]. 2003;18:65–70. Available from: Scholar
  18. 18.
    Grammas P, Tripathy D, Sanchez A, Yin X, Luo J. Brain microvasculature and hypoxia-related proteins in Alzheimer’s disease. Int J Clin Exp Pathol [Internet]. 2011;4(6):616–27. Available from: Scholar
  19. 19.
    Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B. Evidence of angiogenic vessels in Alzheimer’s disease. J Neural Transm [Internet]. 2009;116(5):587–97. Available from: Scholar
  20. 20.
    Lee BH, Hong JP, Hwang JA, Ham BJ, Na KS, Kim WJ, et al. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Res [Internet]. 2015;228(1):95–9. Available from: Scholar
  21. 21.
    Fulzele S, Pillai A. Decreased VEGF mRNA expression in the dorsolateral prefrontal cortex of schizophrenia subjects. Schizophr Res [Internet]. 2009;115(2–3):372–3. Available from: Scholar
  22. 22.
    Pillai A, Howell KR, Ahmed AO, Weinberg D, Allen KM, Bruggemann J, et al. Association of serum VEGF levels with prefrontal cortex volume in schizophrenia. Mol Psychiatry [Internet]. 2016;21(5):686–92. Available from: Scholar
  23. 23.
    Uranova NA, Zimina IS, Vikhreva OV, Krukov NO, Rachmanova VI, Orlovskaya DD. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J Biol Psychiatry [Internet]. 2010;11(3):567–78. Available from: Scholar
  24. 24.
    Uranova NA, Kolomeets NS, Vikhreva OV, Zimina IS, Rachmanova VI, Orlovskaya DD. Ultrastructural pathology of myelinated fibers in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova [Internet]. 2013;113(9):63–9. Available from: Scholar
  25. 25.
    Meier MH, Shalev I, Moffitt TE, Kapur S, Keefe RS, Wong TY, et al. Microvascular abnormality in schizophrenia as shown by retinal imaging. Am J Psychiatry [Internet]. 2013;170(12):1451–9. Available from: Scholar
  26. 26.
    Udristoiu I, Marinescu I, Pirlog MC, Militaru F, Udristoiu T, Marinescu D, et al. The microvascular alterations in frontal cortex during treatment with antipsychotics: a post-mortem study. Romanian J Morphol Embryol [Internet]. 2016;57(2):501–6. Available from: Scholar
  27. 27.
    Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm [Internet]. 2012;119(1):59–71. Available from: Scholar
  28. 28.
    Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis [Internet]. 2015;74:392–405. Available from: Scholar
  29. 29.
    Barcia C, Emborg ME, Hirsch EC, Herrero MT. Blood vessels and parkinsonism. Front Biosci [Internet]. 2004;9:277–82. Available from: Scholar
  30. 30.
    Barcia C, Bautista V, Sanchez-Bahillo A, Fernandez-Villalba E, Faucheux B, Poza Y Poza M, et al. Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm [Internet]. 2005;112(9):1237–48. Available from: Scholar
  31. 31.
    Lindgren HS, Ohlin KE, Cenci MA. Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology [Internet]. 2009;34(12):2477–88. Available from: Scholar
  32. 32.
    Villar-Cheda B, Sousa-Ribeiro D, Rodriguez-Pallares J, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Aging and sedentarism decrease vascularization and VEGF levels in the rat substantia nigra. Implications for Parkinson’s disease. J Cereb Blood Flow Metab [Internet]. 2009;29(2):230–4. Available from: Scholar
  33. 33.
    Globus M, Mildworf B, Melamed E. Cerebral blood flow and cognitive impairment in Parkinson’s disease. Neurology [Internet]. 1985;35(8):1135–9. Available from: Scholar
  34. 34.
    Farkas E, De Jong GI, Apro E, De Vos RA, Steur EN, Luiten PG. Similar ultrastructural breakdown of cerebrocortical capillaries in Alzheimer’s disease, Parkinson’s disease, and experimental hypertension. What is the functional link? Ann N Y Acad Sci [Internet]. 2000;903:72–82. Available from: Scholar
  35. 35.
    Yang P, Pavlovic D, Waldvogel H, Dragunow M, Synek B, Turner C, et al. String vessel formation is increased in the brain of Parkinson disease. J Park Dis [Internet]. 2015;5(4):821–36. Available from: Scholar
  36. 36.
    Merlini M, Wanner D, Nitsch RM. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer’s disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol [Internet]. 2016;131(5):737–52. Available from: Scholar
  37. 37.
    Christov A, Ottman J, Hamdheydari L, Grammas P. Structural changes in Alzheimer’s disease brain microvessels. Curr Alzheimer Res [Internet]. 2008;5(4):392–5. Available from: Scholar
  38. 38.
    Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci U S A [Internet]. 2008;105(9):3587–92. Available from: Scholar
  39. 39.
    Vagnucci AH Jr, Li WW. Alzheimer’s disease and angiogenesis. Lancet [Internet]. 2003;361(9357):605–8. Available from: Scholar
  40. 40.
    Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci [Internet]. 2005;28(4):202–8. Available from: Scholar
  41. 41.
    Lourenco CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular uncoupling in the triple transgenic model of Alzheimer’s disease: impaired cerebral blood flow response to neuronal-derived nitric oxide signaling. Exp Neurol [Internet]. 2017;291:36–43. Available from: Scholar
  42. 42.
    Provias J, Jeynes B. Reduction in vascular endothelial growth factor expression in the superior temporal, hippocampal, and brainstem regions in Alzheimer’s disease. Curr Neurovasc Res [Internet]. 2014;11(3):202–9. Available from: Scholar
  43. 43.
    Hohman TJ, Samuels LR, Liu D, Gifford KA, Mukherjee S, Benson EM, et al. Stroke risk interacts with Alzheimer’s disease biomarkers on brain aging outcomes. Neurobiol Aging [Internet]. 2015;36(9):2501–8. Available from: Scholar
  44. 44.
    Hohman TJ, Bell SP, Jefferson AL. Alzheimer’s disease neuroimaging I. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease. JAMA Neurol [Internet]. 2015;72(5):520–9. Available from: Scholar
  45. 45.
    Grammas P, Samany PG, Thirumangalakudi L. Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. J Alzheimers Dis [Internet]. 2006;9(1):51–8. Available from: Scholar
  46. 46.
    Thirumangalakudi L, Samany PG, Owoso A, Wiskar B, Grammas P. Angiogenic proteins are expressed by brain blood vessels in Alzheimer’s disease. J Alzheimers Dis [Internet]. 2006;10(1):111–8. Available from: Scholar
  47. 47.
    Jung J, Kim S, Yoon K, Moon Y, Roh D, Lee S, et al. The effect of depression on serum VEGF level in Alzheimer’s disease. Dis Markers [Internet]. 2015;2015:742612. Available from: Scholar
  48. 48.
    Ogunshola OO, Antoniou X. Contribution of hypoxia to Alzheimer’s disease: is HIF-1alpha a mediator of neurodegeneration? Cell Mol Life Sci [Internet]. 2009;66(22):3555–63. Available from: Scholar
  49. 49.
    Bulbarelli A, Lonati E, Brambilla A, Orlando A, Cazzaniga E, Piazza F, et al. Abeta42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci [Internet]. 2012;49(4):415–22. Available from: Scholar
  50. 50.
    Chai X, Kong W, Liu L, Yu W, Zhang Z, Sun Y. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis. Neural Regen Res [Internet]. 2014;9(11):1145–53. Available from: Scholar
  51. 51.
    Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clin Exp Pharmacol Physiol [Internet]. 2017;44(3):327–34. Available from: Scholar
  52. 52.
    Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci [Internet]. 2017;67(3):345–51. Available from: Scholar
  53. 53.
    Biron KE, Dickstein DL, Gopaul R, Fenninger F, Jefferies WA. Cessation of neoangiogenesis in Alzheimer’s disease follows amyloid-beta immunization. Sci Rep [Internet]. 2013;3:1354. Available from: Scholar
  54. 54.
    Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One [Internet]. 2011;6(8):e23789. Available from: Scholar
  55. 55.
    Daschil N, Kniewallner KM, Obermair GJ, Hutter-Paier B, Windisch M, Marksteiner J, et al. L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model. Neurobiol Aging [Internet]. 2015;36(3):1333–41. Available from: Scholar
  56. 56.
    Fornaro M, Rocchi G, Escelsior A, Contini P, Ghio M, Colicchio S, et al. VEGF plasma level variations in duloxetine-treated patients with major depression. J Affect Disord [Internet]. 2013;151(2):590–5. Available from: Scholar
  57. 57.
    Kahl KG, Bens S, Ziegler K, Rudolf S, Kordon A, Dibbelt L, et al. Angiogenic factors in patients with current major depressive disorder comorbid with borderline personality disorder. Psychoneuroendocrinology [Internet]. 2009;34(3):353–7. Available from: Scholar
  58. 58.
    Yamada MK. Angiogenesis in refractory depression: a possible phenotypic target to avoid the blood brain barrier. Drug Discov Ther [Internet]. 2016;10(2):74–8. Available from: Scholar
  59. 59.
    Shibata T, Yamagata H, Uchida S, Otsuki K, Hobara T, Higuchi F, et al. The alteration of hypoxia inducible factor-1 (HIF-1) and its target genes in mood disorder patients. Prog Neuro-Psychopharmacol Biol Psychiatry [Internet]. 2013;43:222–9. Available from: Scholar
  60. 60.
    Almeida OP, Ford AH, Flicker L, Hankey GJ, Yeap BB, Clancy P, et al. Angiogenesis inhibition and depression in older men. J Psychiatry Neurosci [Internet]. 2014;39(3):200–5. Available from: Scholar
  61. 61.
    Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry [Internet]. 2012;72(7):562–71. Available from: Scholar
  62. 62.
    Gao Q, Zou K, He Z, Sun X, Chen H. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naive major depressive disorder. Sci Rep [Internet]. 2016;(6):21861. Available from:
  63. 63.
    Kaichi Y, Okada G, Takamura M, Toki S, Akiyama Y, Higaki T, et al. Changes in the regional cerebral blood flow detected by arterial spin labeling after 6-week escitalopram treatment for major depressive disorder. J Affect Disord [Internet]. 2016;194:135–43. Available from: Scholar
  64. 64.
    Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev. 1977;57(2):313–70.PubMedGoogle Scholar
  65. 65.
    Lavoie J, Sigmund C. Minireview: overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology. 2003;144(6):2179–83.PubMedGoogle Scholar
  66. 66.
    Haulica I, Bild W, Serban D. Review: angiotensin peptides and their pleiotropic actions. Renin-Angiotensin-Aldosterone …. 2005.Google Scholar
  67. 67.
    Von Bohlen und Halbach O, Albrecht D, Bohle V u HO, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326(2):599–616.Google Scholar
  68. 68.
    von Bohlen und Halbach O. The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci. 2005;6(4):355–71.Google Scholar
  69. 69.
    Wright JW, Harding JW. Brain renin-angiotensin – a new look at an old system. Prog Neurobiol. 2011;95(1):49–67.PubMedGoogle Scholar
  70. 70.
    Imboden H, Harding JW, Hilgenfeldt U, Celio MR, Felix D. Localization of angiotensinogen in multiple cell types of rat brain. Brain Res. 1987;410(1):74–7.PubMedGoogle Scholar
  71. 71.
    Intebi A, Flaxman M, Ganong W, Deschepper C. Angiotensinogen production by rat astroglial cells in vitro and in vivo. Neuroscience. 1990;34(3):545–54.PubMedGoogle Scholar
  72. 72.
    Yang G, Gray T, Sigmund C, Cassell M. The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res. 1999;817(1-2):123–31.PubMedGoogle Scholar
  73. 73.
    Thomas WG. Regulation of angiotensin II type 1 (AT1) receptor function. Regul Pept. 1999;79(1):9–23.PubMedGoogle Scholar
  74. 74.
    McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003;35:901–18.PubMedGoogle Scholar
  75. 75.
    Karamyan V, Speth R. Enzymatic pathways of the brain renin–angiotensin system: unsolved problems and continuing challenges. Regul Pept. 2007;143:15–27.PubMedGoogle Scholar
  76. 76.
    Basmadjian OM, Occhieppo VB, Marchese NA, Baiardi G, Bregonzio C. Brain angiotensin II involvement in chronic mental disorders. Protein Pept Lett. 2017;24(9):817–26.PubMedGoogle Scholar
  77. 77.
    Zhou J, Pavel J, Macova M, Yu Z-X, Imboden H, Ge L, et al. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke. 2006;37(5):1271–6.PubMedGoogle Scholar
  78. 78.
    Li JJ, Lu J, Kaur C, Sivakumar V, Wu CY, Ling EA. Expression of angiotensin II and its receptors in the normal and hypoxic amoeboid microglial cells and murine BV-2 cells. Neuroscience. 2009;158(4):1488–99.PubMedGoogle Scholar
  79. 79.
    Miyoshi M, Miyano K, Moriyama N, Taniguchi M, Watanabe T. Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor kappaB and activator protein-1 activation. Eur J Neurosci. 2008;27(2):343–51.PubMedGoogle Scholar
  80. 80.
    Wu C, Zha H, Xia Q, Yuan Y, Liang X, Li J. Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats. Mol Cell. 2013;382(1-2):47–58.Google Scholar
  81. 81.
    Kloet A de Liu M, Rodríguez V. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J. 2015;309(5):R444–58.Google Scholar
  82. 82.
    Allen A, Moeller I, Jenkins T, Zhuo J, Aldred G. Angiotensin receptors in the nervous system. Res Bull. 1998;47(1):17–28.Google Scholar
  83. 83.
    D B, Renaud LP. ANG II AT1 receptors induce depolarization and inward current in rat median preoptic neurons in vitro. Am J Physiol. 1998;275(2 Pt 2):R632–9.Google Scholar
  84. 84.
    Yang C, Phillips M. Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am J. 1992;263(6 Pt 2):R1333–8.Google Scholar
  85. 85.
    Albrecht D. Physiological and pathophysiological functions of different angiotensins in the brain. Br J Pharmacol. 2010;159(7):1392–401.PubMedCentralGoogle Scholar
  86. 86.
    Hunyady L1, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20(5):953–70.PubMedGoogle Scholar
  87. 87.
    Barauna V, Magalhaes F, Campos L. Shear stress-induced Ang II AT1 receptor activation: G-protein dependent and independent mechanisms. Biochemistry. 2013;434(3):647–52.Google Scholar
  88. 88.
    Skultetyova D, Sakalova A, Chnupa P. The role of angiotensin type 1 receptor in inflammation and endothelial dysfunction: clinical application. Front. 2010;1(9):192–200.Google Scholar
  89. 89.
    Greene A, Amaral S. Microvascular angiogenesis and the renin-angiotensin system. Curr Hypertens Rep. 2002 Feb;4(1):56–62.PubMedGoogle Scholar
  90. 90.
    Silvestre J, Lévy B. Hormones and the neovascularization process: role of angiotensin II. Mech Angiogenes. 2005.Google Scholar
  91. 91.
    Khakoo A, Sidman R, Pasqualini R, Arap W. Does the renin-angiotensin system participate in regulation of human vasculogenesis and angiogenesis? Cancer Res. 2008 Nov 15;68(22):9112–5.PubMedGoogle Scholar
  92. 92.
    Jośko J, Mazurek M. Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit. 2004;10(4):RA89–98.PubMedGoogle Scholar
  93. 93.
    Heffelfinger S. The renin angiotensin system in the regulation of angiogenesis. Curr Pharm Des. 2007;13(12):1215–29.PubMedGoogle Scholar
  94. 94.
    Emanueli C, Salis M, Stacca T, Pinna A. Angiotensin AT1 receptor signalling modulates reparative angiogenesis induced by limb ischaemia. Br J. 2002.Google Scholar
  95. 95.
    Tamarat R, Silvestre J, Durie M, Levy B. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor-and inflammation-related pathways. Lab Invest. 2002;82(6):747–56.PubMedGoogle Scholar
  96. 96.
    Fernandez L, Twickler J, Mead A. Neovascularization produced by angiotensin II. Lab Clin Med. 1985;105(2):141–5.Google Scholar
  97. 97.
    Amaral S, Linderman J, Morse M. Angiogenesis induced by electrical stimulation is mediated by angiotensin II and VEGF. Microcirculation. 2001;8(1):57–67.PubMedGoogle Scholar
  98. 98.
    Sasaki K, Murohara T, Ikeda H. Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J. 2002;109(5):603–11.Google Scholar
  99. 99.
    Battegay EJ, de Miguel LS, Petrimpol M, Humar R. Effects of anti hypertensive drugs on vessel rarefaction. Curr Opin Pharmacol. 2007;7(2):151–7.PubMedGoogle Scholar
  100. 100.
    Artham S, Fouda A, El-Remessy A. Vascular protective effects of angiotensin receptor blockers: beyond blood pressure. Recept Clin. 2015;2(3):e774.Google Scholar
  101. 101.
    Fouda A, Alhusban A, Ishrat T, Pillai B. Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Molecular. 2017.Google Scholar
  102. 102.
    Willis L, El-Remessy A, Somanath P, Deremer D. Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clin Sci. 2011;120(8):307–19.PubMedGoogle Scholar
  103. 103.
    Shih Y, Tsai S, Huang S, Chiang Y, Hughes M. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory. Neuroscience. 2016;322:346–57.PubMedGoogle Scholar
  104. 104.
    Alhusban A, Kozak A, Ergul A, Fagan S. AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol. 2013;344(2):348–59.Google Scholar
  105. 105.
    Ergul A, Alhusban A, Fagan SC. Angiogenesis: a harmonized target for recovery after stroke. Stroke. 2012;43(8):2270–4.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Soliman S, Ishrat T, Pillai A, Somanath P. Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of vascular. Pharmacology. 2014;349(3):444–57.Google Scholar
  107. 107.
    Ishrat T, Pillai B, Soliman S, Fouda A, Kozak A. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Molecular. 2015;51(3):1542–53.Google Scholar
  108. 108.
    Culman J, Blume A, Gohlke P. The renin-angiotensin system in the brain: possible therapeutic implications for AT1-receptor blockers. J Hum. 2002.Google Scholar
  109. 109.
    Wright JW1, Harding JW. The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunctionassociated with Alzheimer’s disease. J Renin Angiotensin Aldosterone Syst. 2008;9(4):226–37.PubMedGoogle Scholar
  110. 110.
    Dobrek L, Thor P. Future potential indications for pharmacotherapy using renin-angiotensin-aldosterone system inhibitory agents. Advances in Clinical and Experimental Medicine. 2010;19(3):389–98.Google Scholar
  111. 111.
    Wincewicz D, Braszko J. Telmisartan attenuates cognitive impairment caused by chronic stress in rats. Pharmacological Reports. 2014;66(3):436–41.PubMedGoogle Scholar
  112. 112.
    Taylor WD, Benjamin S, McQuoid DR, Payne ME, Krishnan RR, MacFall JR, et al. AGTR1 gene variation: association with depression and frontotemporal morphology. Psychiatry Res. 2012;202(2):104–9.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Baiardi G, Bregonzio C, Jezova M. Angiotensin II AT1 receptor blockade prolongs the lifespan of spontaneously hypertensive rats and reduces stress-induced release of catecholamines. Ann New. 2004;1018:131–6.Google Scholar
  114. 114.
    Bregonzio C, Armando I, Ando H. Angiotensin II AT1 receptor blockade prevents gastric ulcers during cold-restraint stress. Ann New. 2004;1018:351–5.Google Scholar
  115. 115.
    Saavedra JM, Ando H, Armando I, Baiardi G, Bregonzio C, Juorio A, et al. Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regul Pept. 2005;128(3):227–38.PubMedGoogle Scholar
  116. 116.
    Tota S. Study on the role of central Renin-Angiotensin System (RAS) in memory function and its interaction with Brain Derived Neurotrophic Factor (BDNF). 2011.Google Scholar
  117. 117.
    Goel R, Bhat S, Hanif K, Nath C, Shukla R. Angiotensin II receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-κB-mediated BDNF/CREB expression and. Mol Neurobiol. 2017;55(2):1725–39.PubMedGoogle Scholar
  118. 118.
    Occhieppo VB, Marchese NA, Rodriguez ID, Basmadjian OM, Baiardi G, Bregonzio C. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1 receptor activation. Eur J Neurosci. 2017;45(12):1586–93. Available from: PubMedGoogle Scholar
  119. 119.
    Hainsworth A, Markus H. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow. 2008;28:1877–91.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leticia Ester Delgado-Marín
    • 1
  • Osvaldo Martin Basmadjian
    • 2
  • Victoria Belén Occhieppo
    • 2
  • Natalia Andrea Marchese
    • 2
  • Claudia Bregonzio
    • 2
  • Gustavo Carlos Baiardi
    • 1
  1. 1.Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT-CONICET-UNC)Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations