Advertisement

Neurobiology of Pain: A Humanistic Perspective

  • Pablo Rodolfo BrumovskyEmail author
  • Carly Jane McCarthy
  • Mariana Malet
  • Marcelo José Villar
Chapter

Abstract

The most up-to-date description defines pain as an “unpleasant and emotional experience associated with actual or potential tissue damage, or described in terms of such damage” (International Association for the Study of Pain (IASP)). Two words stand out: “experience” and “emotional.” In fact, the cognitive processing of painful sensations is strongly dependent on the remembrance of previous painful experiences (both own and as seen on others) and is influenced by, or can influence, emotional states. The IASP description also accounts for a massive neurobiology behind the processing of painful sensations and its impact on emotions. In fact, thousands of neurons in the peripheral and central nervous system are related to each other through very specific connections, and they participate in the conscious evoking of pain, through yet not totally understood mechanisms. Ultimately, the general role of pain is to assist us, in a sensorial fashion, in our interaction with the surrounding world and to avoid potential tissue damage. We could say that this is good pain, a pain we need. However, when pain becomes chronic, even in the absence of tissue damage, it triggers an experience that we certainly do not need, namely, suffering. Suffering involves the human person as a whole, urging us to find ways to face it appropriately, in a manner that may be accepted in terms of meaning. The present chapter aims to present pain encompassing both the neurobiological and experiential/emotional aspects that make it both a necessity and a challenge in human life.

Keywords

Chronic pain Experience Emotions Nociception Primary afferent neurons Spinal cord Tissue damage 

References

  1. 1.
    Sullivan MD, Derbyshire SW. Is there a purely biological core to pain experience? Pain. 2015;156(11):2119–20.PubMedGoogle Scholar
  2. 2.
    Villar M. Qué es el Dolor. 1st ed. Buenos Aires: Paidós; 2016. p. 176.Google Scholar
  3. 3.
    Sherrington CS. The integrative action of the nervous system. New York: Oxford University Press; 1906. p. 446.Google Scholar
  4. 4.
    Merskey H, Bogduk N. Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. Seattle: IASP Press; 1994. p. 209–2014.Google Scholar
  5. 5.
    Williams AC, Craig KD. Updating the definition of pain. Pain. 2016;157(11):2420–3.PubMedGoogle Scholar
  6. 6.
    Kruger L, Perl ER, Sedivec MJ. Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J Comp Neurol. 1981;198(1):137–54.PubMedGoogle Scholar
  7. 7.
    Lewin GR, Moshourab R. Mechanosensation and pain. J Neurobiol. 2004;61(1):30–44.PubMedGoogle Scholar
  8. 8.
    Lawson SN. Phenotype and function of somatic primary afferent nociceptive neurons with C-, A delta- or A alpha/beta-fibres. Exp Physiol. 2002;87(2):239–44.PubMedGoogle Scholar
  9. 9.
    Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol. 1969;32(6):1025–43.PubMedGoogle Scholar
  10. 10.
    Kandel ER. In: Kandel ER, et al., editors. Principles of neural science. 5th ed. New York: McGraw-Hill; 2012. 1760.Google Scholar
  11. 11.
    Koerber HR, McIlwrath SL, Lawson JJ, Malin SA, Anderson CE, JankowskiB MP, Davis M. Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers. Mol Pain. 2010;6:58.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Belmonte L, Cervero F. In: Belmonte L, Cervero F, editors. Neurobiology of nociceptors. Oxford: Oxford University Press; 1996.Google Scholar
  13. 13.
    Handwerker HO, KiloP S, Reeh W. Unresponsive afferent nerve fibres in the sural nerve of the rat. J Physiol. 1991;435:229–42.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjork E, Handwerker H. Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci. 1995;15(1 Pt 1):333–41.PubMedGoogle Scholar
  15. 15.
    Weidner C, Schmelz M, Schmidt R, Hansson B, Handwerker HO, Torebjork HE. Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J Neurosci. 1999;19(22):10184–90.PubMedGoogle Scholar
  16. 16.
    Hunt SP, Koltzenburg M. The neurobiology of pain. Oxford: Oxford University Press; 2005.Google Scholar
  17. 17.
    Hökfelt, T, Zhang, X, Shi, T -J, Tong, Y -G, Wang, HF, Xu, ZQD, Landry, M, Broberger, C, Diez, M, Ju, G, Grand, G, Villar, M. Phenotypic changes in peripheral and central neurons induced by nerve injury: focus on neuropeptides. in: O Hayaishi (Ed.) Challenges for Neuroscience in the 21st Century. Japan Scientific Societies Press,, Karger,; 2000:63–87.Google Scholar
  18. 18.
    Villar MJ, Cortés R, Theodorsson E, Wiesenfeld-Hallin Z, Schalling M, Fahrenkrug J, Emson PC, Hökfelt T. Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience. 1989;33(3):587–604.PubMedGoogle Scholar
  19. 19.
    Rexed B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol. 1952;96(3):414–95.PubMedGoogle Scholar
  20. 20.
    Burgess PR, Perl ER. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol. 1967;190(3):541–62.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol. 1979;186(2):133–50.PubMedGoogle Scholar
  22. 22.
    Gobel S, Falls WM, Humphrey E. Morphology and synaptic connections of ultrafine primary axons in lamina I of the spinal dorsal horn: candidates for the terminal axonal arbors of primary neurons with unmyelinated (C) axons. J Neurosci. 1981;1(10):1163–79.PubMedGoogle Scholar
  23. 23.
    Fyffe RE, Light AR. The ultrastructure of group Ia afferent fiber synapses in the lumbosacral spinal cord of the cat. Brain Res. 1984;300(2):201–9.PubMedGoogle Scholar
  24. 24.
    Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science. 1986;234(4774):358–61.Google Scholar
  25. 25.
    Gobel S, Falls WM. Anatomical observations of horseradish peroxidase-filled terminal primary axonal arborizations in layer II of the substantia gelatinosa of Rolando. Brain Res. 1979;175(2):335–40.PubMedGoogle Scholar
  26. 26.
    Sugiura Y, Terui N, Hosoya Y, Tonosaki Y, Nishiyama K, Honda T. Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol. 1993;332(3):315–25.PubMedGoogle Scholar
  27. 27.
    Cruz F, Lima D, Zieglgansberger W, Coimbra A. Fine structure and synaptic architecture of HRP-labelled primary afferent terminations in lamina IIi of the rat dorsal horn. J Comp Neurol. 1991;305(1):3–16.PubMedGoogle Scholar
  28. 28.
    Nagy JI, Hunt SP. The termination of primary afferents within the rat dorsal horn: evidence for rearrangement following capsaicin treatment. J Comp Neurol. 1983;218(2):145–58.PubMedGoogle Scholar
  29. 29.
    Cruz F, Lima D, Coimbra A. Several morphological types of terminal arborizations of primary afferents in laminae I–II of the rat spinal cord, as shown after HRP labeling and Golgi impregnation. J Comp Neurol. 1987;261(2):221–36.PubMedGoogle Scholar
  30. 30.
    Woolf CJ. Central terminations of cutaneous mechanoreceptive afferents in the rat lumbar spinal cord. J Comp Neurol. 1987;261(1):105–19.PubMedGoogle Scholar
  31. 31.
    Beal JA, Knight DS, Nandi KN. Structure and development of central arborizations of hair follicle primary afferent fibers. Anat Embryol (Berl). 1988;178(3):271–9.Google Scholar
  32. 32.
    Shortland P, Woolf CJ, Fitzgerald M. Morphology and somatotopic organization of the central terminals of hindlimb hair follicle afferents in the rat lumbar spinal cord. J Comp Neurol. 1989;289(3):416–33.PubMedGoogle Scholar
  33. 33.
    Shortland P, Woolf CJ. Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol. 1993;329(4):491–511.PubMedGoogle Scholar
  34. 34.
    Craig AD, Mense S. The distribution of afferent fibers from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase. Neurosci Lett. 1983;41(3):233–8.PubMedGoogle Scholar
  35. 35.
    Spike RC, Puskar Z, Andrew D, Todd AJ. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci. 2003;18(9):2433–48.PubMedGoogle Scholar
  36. 36.
    Jinks SL, Carstens E. Superficial dorsal horn neurons identified by intracutaneous histamine: chemonociceptive responses and modulation by morphine. J Neurophysiol. 2000;84(2):616–27.PubMedGoogle Scholar
  37. 37.
    Ge SN, Li ZH, Tang J, Ma Y, Hioki H, Zhang T, Lu YC, Zhang FX, Mizuno N, Kaneko T, Liu YY, Lung MS, Gao GD, Li JL. Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat. Brain Struct Funct. 2014;219(1):211–29.PubMedGoogle Scholar
  38. 38.
    Littlewood NK, Todd AJ, Spike RC, Watt C, Shehab SA. The types of neuron in spinal dorsal horn which possess neurokinin-1 receptors. Neuroscience. 1995;66(3):597–608.PubMedGoogle Scholar
  39. 39.
    Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11(12):823–36.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Bernard JF, Dallel R, Raboisson P, Villanueva L, Le Bars D. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J Comp Neurol. 1995;353(4):480–505.PubMedGoogle Scholar
  41. 41.
    Burstein R, Cliffer KD, Giesler GJ Jr. Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol. 1990;291(3):329–44.PubMedGoogle Scholar
  42. 42.
    Todd AJ, McGill MM, Shehab SA. Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci. 2000;12(2):689–700.PubMedGoogle Scholar
  43. 43.
    Al-Khater KM, Todd AJ. Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol. 2009;515(6):629–46.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Grudt TJ, Perl ER. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol. 2002;540(Pt 1):189–207.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse. 2003;50(2):117–29.PubMedGoogle Scholar
  46. 46.
    Santos MS, Li H, Voglmaier SM. Synaptic vesicle protein trafficking at the glutamate synapse. Neuroscience. 2009;158(1):189–203.PubMedGoogle Scholar
  47. 47.
    Xu Y, Lopes C, Wende H, Guo Z, Cheng L, Birchmeier C, Ma Q. Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J Neurosci. 2013;33(37):14738–48.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Polgar E, Fowler JH, McGill MM, Todd AJ. The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res. 1999;833(1):71–80.PubMedGoogle Scholar
  49. 49.
    Eckert WA 3rd, McNaughton KK, Light AR. Morphology and axonal arborization of rat spinal inner lamina II neurons hyperpolarized by mu-opioid-selective agonists. J Comp Neurol. 2003;458(3):240–56.PubMedGoogle Scholar
  50. 50.
    Kemp T, Spike RC, Watt C, Todd AJ. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience. 1996;75(4):1231–8.PubMedGoogle Scholar
  51. 51.
    Spike RC, Puskar Z, Sakamoto H, Stewart W, Watt C, Todd AJ. MOR-1-immunoreactive neurons in the dorsal horn of the rat spinal cord: evidence for nonsynaptic innervation by substance P-containing primary afferents and for selective activation by noxious thermal stimuli. Eur J Neurosci. 2002;15(8):1306–16.PubMedGoogle Scholar
  52. 52.
    Todd AJ, Russell G, Spike RC. Immunocytochemical evidence that GABA and neurotensin exist in different neurons in laminae II and III of rat spinal dorsal horn. Neuroscience. 1992;47(3):685–91.PubMedGoogle Scholar
  53. 53.
    Proudlock F, Spike RC, Todd AJ. Immunocytochemical study of somatostatin, neurotensin, GABA, and glycine in rat spinal dorsal horn. J Comp Neurol. 1993;327(2):289–97.PubMedGoogle Scholar
  54. 54.
    Polgar E, Furuta T, Kaneko T, Todd A. Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience. 2006;139(2):687–97.PubMedGoogle Scholar
  55. 55.
    Polgar E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ. Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain. 2003;104(1–2):229–39.PubMedGoogle Scholar
  56. 56.
    Sardella TC, Polgar E, Garzillo F, Furuta T, Kaneko T, WatanabeA M, Todd J. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol Pain. 2011;7:76.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.PubMedGoogle Scholar
  58. 58.
    Mendell LM. Constructing and deconstructing the gate theory of pain. Pain. 2014;155(2):210–6.PubMedGoogle Scholar
  59. 59.
    Brodal P. The central nervous system. Structure and function. Oxford: Oxford University Press; 2010. p. 591.Google Scholar
  60. 60.
    Yaksh TL, Tyce GM. Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res. 1979;171(1):176–81.PubMedGoogle Scholar
  61. 61.
    Yaksh TL. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 1979;160(1):180–5.PubMedGoogle Scholar
  62. 62.
    Gebhart GF, Proudfit HK. Descending control of pain processing. In: Hunt SE, Koltzenburg M, editors. The neurobiology of pain. Oxford: Oxford University Press; 2005. p. 289–310.Google Scholar
  63. 63.
    Steinbusch HW. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557–618.PubMedGoogle Scholar
  64. 64.
    Yen CT, Lu PL. Thalamus and pain. Acta Anaesthesiol Taiwan. 2013;51(2):73–80.PubMedGoogle Scholar
  65. 65.
    Iwata K, Kenshalo DR Jr, Dubner R, Nahin RL. Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol. 1992;321(3):404–20.PubMedGoogle Scholar
  66. 66.
    Gauriau C, Bernard JF. Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J Neurosci. 2004;24(3):752–61.PubMedGoogle Scholar
  67. 67.
    Craig AD, Bushnell MC, Zhang ET, Blomqvist A. A thalamic nucleus specific for pain and temperature sensation. Nature. 1994;372(6508):770–3.PubMedGoogle Scholar
  68. 68.
    Liao CC, Chen RF, Lai WS, Lin RC, Yen CT. Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent. J Comp Neurol. 2010;518(13):2592–611.PubMedGoogle Scholar
  69. 69.
    Friebel U, Eickhoff SB, Lotze M. Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. NeuroImage. 2011;58(4):1070–80.PubMedGoogle Scholar
  70. 70.
    Willis WD Jr. Pain pathways in the primate. Prog Clin Biol Res. 1985;176:117–33.PubMedGoogle Scholar
  71. 71.
    Carrera E, Bogousslavsky J. The thalamus and behavior: effects of anatomically distinct strokes. Neurology. 2006;66(12):1817–23.PubMedGoogle Scholar
  72. 72.
    Schmahmann JD. Vascular syndromes of the thalamus. Stroke. 2003;34(9):2264–78.PubMedGoogle Scholar
  73. 73.
    Bowsher D. Allodynia in relation to lesion site in central post-stroke pain. J Pain. 2005;6(11):736–40.PubMedGoogle Scholar
  74. 74.
    Kumar G, Soni CR. Central post-stroke pain: current evidence. J Neurol Sci. 2009;284(1–2):10–7.PubMedGoogle Scholar
  75. 75.
    Krause T, Brunecker P, Pittl S, Taskin B, Laubisch D, Winter B, Lentza ME, Malzahn U, Villringer K, Villringer A, Jungehulsing GJ. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry. 2012;83(8):776–84.PubMedGoogle Scholar
  76. 76.
    Davis DA, Ghantous ME, Farmer MA, Baria AT, Apkarian AV. Identifying brain nociceptive information transmission in patients with chronic somatic pain. Pain Rep. 2016;1(4):e575.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain. 1911;34:102–254.Google Scholar
  78. 78.
    Mazzola L, Isnard J, Peyron R, Mauguiere F. Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain. 2012;135(Pt 2):631–40.PubMedGoogle Scholar
  79. 79.
    Penfield W, Faulk ME Jr. The insula; further observations on its function. Brain. 1955;78(4):445–70.PubMedGoogle Scholar
  80. 80.
    Liberati G, Klocker A, Safronova MM, Ferrao Santos S, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Nociceptive local field potentials recorded from the human insula are not specific for nociception. PLoS Biol. 2016;14(1):e1002345.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Melzack R, Cassey KL. Sensory, motivational and central control determinants of chronic pain: a new conceptual model. In: Kenshalo DR, editor. The skin senses. Springfield: Thomas; 1968. p. 432.Google Scholar
  82. 82.
    Peyron R, Garcia-Larrea L, Gregoire MC, Convers P, Richard A, Lavenne F, Barral FG, Mauguiere F, Michel D, Laurent B. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain. 2000;84(1):77–87.PubMedGoogle Scholar
  83. 83.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84.PubMedGoogle Scholar
  84. 84.
    Dum RP, Levinthal DJ, Strick PL. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci. 2009;29(45):14223–35.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;154(Suppl 1):S29–43.PubMedGoogle Scholar
  86. 86.
    Mazzola L, Isnard J, Mauguiere F. Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cereb Cortex. 2006;16(7):960–8.PubMedGoogle Scholar
  87. 87.
    Mazzola L, Faillenot I, Barral FG, Mauguiere F, Peyron R. Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex. NeuroImage. 2012;60(1):409–18.PubMedGoogle Scholar
  88. 88.
    Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin. 2012;42(5):299–313.PubMedGoogle Scholar
  89. 89.
    Garcia-Larrea L. Insights gained into pain processing from patients with focal brain lesions. Neurosci Lett. 2012;520(2):188–91.PubMedGoogle Scholar
  90. 90.
    Lenz FA, Gracely RH, Romanoski AJ, Hope EJ, Rowland LH, Dougherty PM. Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nat Med. 1995;1(9):910–3.PubMedGoogle Scholar
  91. 91.
    Caruana F, Jezzini A, Sbriscia-Fioretti B, Rizzolatti G, Gallese V. Emotional and social behaviors elicited by electrical stimulation of the insula in the macaque monkey. Curr Biol. 2011;21(3):195–9.PubMedGoogle Scholar
  92. 92.
    Craig AD. How do you feel – now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59–70.PubMedGoogle Scholar
  93. 93.
    Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G. Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron. 2003;40(3):655–64.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 2006;10(5):204–11.PubMedGoogle Scholar
  95. 95.
    Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. 2001;79(1–2):1–37.PubMedGoogle Scholar
  96. 96.
    Langsjo JW, Alkire MT, Kaskinoro K, Hayama H, Maksimow A, Kaisti KK, Aalto S, Aantaa R, Jaaskelainen SK, Revonsuo A, Scheinin H. Returning from oblivion: imaging the neural core of consciousness. J Neurosci. 2012;32(14):4935–43.PubMedGoogle Scholar
  97. 97.
    de Wied M, Verbaten MN. Affective pictures processing, attention, and pain tolerance. Pain. 2001;90(1–2):163–72.PubMedGoogle Scholar
  98. 98.
    Godinho F, Magnin M, Frot M, Perchet C, Garcia-Larrea L. Emotional modulation of pain: is it the sensation or what we recall? J Neurosci. 2006;26(44):11454–61.PubMedGoogle Scholar
  99. 99.
    Loggia ML, Mogil JS, Bushnell MC. Empathy hurts: compassion for another increases both sensory and affective components of pain perception. Pain. 2008;136(1–2):168–76.PubMedGoogle Scholar
  100. 100.
    Tracey I. Finding the hurt in pain. Cerebrum. 2016;(December):1–13.Google Scholar
  101. 101.
    Loeser JD. Pain and suffering. Clin J Pain. 2000;16(2 Suppl):S2–6.PubMedGoogle Scholar
  102. 102.
    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Woolf CJ. Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology. 2007;106(4):864–7.PubMedGoogle Scholar
  104. 104.
    Brand PY, Yancey P. The gift of pain. Why we hurt and what we can do about it. New York: Zondervan; 1997. p. 352.Google Scholar
  105. 105.
    Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348(f7656):1–12.Google Scholar
  106. 106.
    Bouhassira D, Lanteri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008;136(3):380–7.PubMedGoogle Scholar
  107. 107.
    Harker J, Reid KJ, Bekkering GE, Kellen E, Bala MM, Riemsma R, Worthy G, Misso K, Kleijnen J. Epidemiology of chronic pain in Denmark and Sweden. Pain Res Treat. 2012;2012:371248.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630–5.PubMedGoogle Scholar
  109. 109.
    Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–19.PubMedGoogle Scholar
  110. 110.
    Magrinelli F, Zanette G, Tamburin S. Neuropathic pain: diagnosis and treatment. Pract Neurol. 2013;13(5):292–307.PubMedGoogle Scholar
  111. 111.
    Bouhassira D, Attal N. Translational neuropathic pain research: a clinical perspective. Neuroscience. 2016;338:27–35.PubMedGoogle Scholar
  112. 112.
    Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924–35.PubMedGoogle Scholar
  113. 113.
    Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DL, Bouhassira D, Cruccu G, Freeman R, Hansson P, Nurmikko T, Raja SN, Rice AS, Serra J, Smith BH, Treede RD, Jensen TS. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016;157(8):1599–606.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Gilron I, Baron R, Jensen T. Neuropathic pain: principles of diagnosis and treatment. Mayo Clin Proc. 2015;90(4):532–45.PubMedGoogle Scholar
  115. 115.
    Nicholson B, Verma S. Comorbidities in chronic neuropathic pain. Pain Med. 2004;5(Suppl 1):S9–S27.PubMedGoogle Scholar
  116. 116.
    Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, Almazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil. 2013;21(9):1145–53.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Breivik H, Eisenberg E, O’Brien T. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care. BMC Public Health. 2013;13:1229.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Reid KJ, Harker J, Bala MM, Truyers C, Kellen E, Bekkering GE, Kleijnen J. Epidemiology of chronic non-cancer pain in Europe: narrative review of prevalence, pain treatments and pain impact. Curr Med Res Opin. 2011;27(2):449–62.PubMedGoogle Scholar
  120. 120.
    Smith BH, Torrance N. Epidemiology of neuropathic pain and its impact on quality of life. Curr Pain Headache Rep. 2012;16(3):191–8.PubMedGoogle Scholar
  121. 121.
    Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013;105:185–99.PubMedPubMedCentralGoogle Scholar
  122. 122.
  123. 123.
    Brumovsky, P.R., M.J. Villar T. Hökfelt, Retrograde cellular changes in primary afferent and sympathetic neurons after nerve injury, Encyclopedia of pain, R. Schmidt, G.F. Gebhart. 2013, Springer: Berlin. 3407–3415.Google Scholar
  124. 124.
    Bonica J. Management of pain. Philadelphia: Lea & Febiger; 1953. p. 1533.Google Scholar
  125. 125.
    Melzack R, Wall PD. The challenge of pain. London: Penguin; 1996. p. 368.Google Scholar
  126. 126.
    Meerwijk EL, Weiss SJ. Toward a unifying definition: response to ‘The concept of mental pain’. Psychother Psychosom. 2014;83(1):62–3.PubMedGoogle Scholar
  127. 127.
    Meerwijk EL, Ford JM, Weiss SJ. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain Imaging Behav. 2013;7(1):1–14.PubMedGoogle Scholar
  128. 128.
    Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87(2):81–97.PubMedGoogle Scholar
  129. 129.
    Flor H, Turk DC. Chronic pain. An integrated behavioral approach. Seattle: IASP Press; 2011. p. 547.Google Scholar
  130. 130.
    McMahon EM, Corcoran P, McAuliffe C, Keeley H, Perry IJ, Arensman E. Mediating effects of coping style on associations between mental health factors and self-harm among adolescents. Crisis. 2013;34(4):242–50.PubMedGoogle Scholar
  131. 131.
    Purdie F, Morley S. Compassion and chronic pain. Pain. 2016;157(12):2625–7.PubMedGoogle Scholar
  132. 132.
    Finan PH, Garland EL. The role of positive affect in pain and its treatment. Clin J Pain. 2015;31(2):177–87.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Goodin BR, Bulls HW. Optimism and the experience of pain: benefits of seeing the glass as half full. Curr Pain Headache Rep. 2013;17(5):329.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Sturgeon JA, Zautra AJ. Resilience: a new paradigm for adaptation to chronic pain. Curr Pain Headache Rep. 2010;14(2):105–12.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Ong AD, Zautra AJ, Reid MC. Psychological resilience predicts decreases in pain catastrophizing through positive emotions. Psychol Aging. 2010;25(3):516–23.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Hassett AL, Finan PH. The role of resilience in the clinical management of chronic pain. Curr Pain Headache Rep. 2016;20(6):39.PubMedGoogle Scholar
  137. 137.
    Sin NL, Lyubomirsky S. Enhancing well-being and alleviating depressive symptoms with positive psychology interventions: a practice-friendly meta-analysis. J Clin Psychol. 2009;65(5):467–87.PubMedGoogle Scholar
  138. 138.
    Gilbert P. The origins and nature of compassion focused therapy. Br J Clin Psychol. 2014;53(1):6–41.PubMedGoogle Scholar
  139. 139.
    Arnold LM, Crofford LJ, Mease PJ, Burgess SM, Palmer SC, Abetz L, Martin SA. Patient perspectives on the impact of fibromyalgia. Patient Educ Couns. 2008;73(1):114–20.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Smith JA, Osborn M. Pain as an assault on the self: an interpretative phenomenological analysis of the psychological impact of chronic benign low back pain. Psychol Health. 2007;22:517–34.Google Scholar
  141. 141.
    Costa J, Pinto-Gouveia J. Acceptance of pain, self-compassion and psychopathology: using the chronic pain acceptance questionnaire to identify patients’ subgroups. Clin Psychol Psychother. 2011;18(4):292–302.PubMedGoogle Scholar
  142. 142.
    Wren AA, Somers TJ, Wright MA, Goetz MC, Leary MR, Fras AM, Huh BK, Rogers LL, Keefe FJ. Self-compassion in patients with persistent musculoskeletal pain: relationship of self-compassion to adjustment to persistent pain. J Pain Symptom Manag. 2012;43(4):759–70.Google Scholar
  143. 143.
    Atlas LY, Wager TD. How expectations shape pain. Neurosci Lett. 2012;520(2):140–8.PubMedGoogle Scholar
  144. 144.
    Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet. 1978;2(8091):654–7.PubMedGoogle Scholar
  145. 145.
    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303(5661):1162–7.PubMedGoogle Scholar
  146. 146.
    Price DD, Craggs J, Verne GN, Perlstein WM, Robinson ME. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain. 2007;127(1–2):63–72.PubMedGoogle Scholar
  147. 147.
    Eippert F, Finsterbusch J, Bingel U, Buchel C. Direct evidence for spinal cord involvement in placebo analgesia. Science. 2009;326(5951):404.PubMedGoogle Scholar
  148. 148.
    Goffaux P, Redmond WJ, Rainville P, Marchand S. Descending analgesia – when the spine echoes what the brain expects. Pain. 2007;130(1–2):137–43.PubMedGoogle Scholar
  149. 149.
    Goffaux P, de Souza JB, Potvin S, Marchand S. Pain relief through expectation supersedes descending inhibitory deficits in fibromyalgia patients. Pain. 2009;145(1–2):18–23.PubMedGoogle Scholar
  150. 150.
    Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011;8(8):665–70.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Kross E, Berman MG, Mischel W, Smith EE, Wager TD. Social rejection shares somatosensory representations with physical pain. Proc Natl Acad Sci U S A. 2011;108(15):6270–5.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Krummenacher P, Candia V, Folkers G, Schedlowski M, Schonbachler G. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):368–74.PubMedGoogle Scholar
  153. 153.
    Sullivan MD. Finding pain between minds and bodies. Clin J Pain. 2001;17(2):146–56.PubMedGoogle Scholar
  154. 154.
    Morsella E, Godwin CA, Jantz TK, Krieger SC, Gazzaley A. Homing in on consciousness in the nervous system: an action-based synthesis. Behav Brain Sci. 2016;39:e168.Google Scholar
  155. 155.
    Daudet A (author) In the land of pain. (trans: Barnes J) Vintage classics. 2018; 112 pp.Google Scholar
  156. 156.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo Rodolfo Brumovsky
    • 1
    Email author
  • Carly Jane McCarthy
    • 1
  • Mariana Malet
    • 1
  • Marcelo José Villar
    • 1
  1. 1.Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Austral, Facultad de Ciencias BiomédicasUniversidad AustralPilarArgentina

Personalised recommendations