Advertisement

The Value of Neurocognitive Assessment for Diagnosis and Treatment in Schizophrenic Spectrum Disorders

  • Guillermo Alfonso
  • Bruno César Franco
  • Mauricio Cervigni
  • Paola Buedo
  • Celina Graciela Korzeniowski
  • Pascual Ángel Gargiulo
Chapter

Abstract

The present chapter aims to analyze the contribution and relevance of neurocognitive assessment in diagnosis and treatment design in schizophrenic spectrum disorders (SSD). The observation of cognitive affections was included in the first descriptions associated with schizophrenia. However, its importance has been recently recognized: in the face of neuroscience advances, its value for the prediction of the evolutionary course of the disease has been repeatedly highlighted.

After a brief analysis of the consequences that the current psychiatric nosography has raised for the clinic and the research, a review of the most frequent cognitive alterations in SSD and the corresponding strategies of investigation are proposed, considering its linkages with the behavioral and positive symptoms, personality variables, and social difficulties. The influence of schizophrenia-associated disorders such as substance abuse, anxiety, and depression was also included. Finally, some aspects about the neurocognitive rehabilitation programs are presented. We believe that this chapter could help to orientate new research projects. But also, to encourage the clinical application of functional neuro-evaluation tasks and neuro-rehabilitation protocols.

These measures could promote the constitution of therapeutic offers that, together with pharmacological treatment and psychotherapy, would give the patient an active participation in the improvement of their quality of life.

Keywords

Schizophrenic spectrum Cognitive deficit Cognitive assessment Neurorehabilitation 

References

  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-V). Washington: American Psychiatric Association Publishing; 2013.Google Scholar
  2. 2.
    Guidano VF. El modelo cognitivo postracionalista: hacia una reconceptualización teórica y clínica [Posracionalist cognitive model: towards a clinical and theoretical re-conceptualization]. Madrid: Desclée de Brouwer; 2001. Spanish.Google Scholar
  3. 3.
    Guimón J. Los límites del concepto de espectro en la esquizofrenia [Limits of spectrum concept in schizophrenia]. Av Salud Ment Relacional. 2005;4(3):1–12. Spanish.Google Scholar
  4. 4.
    Silva Ibarra H. La esquizofrenia: de Kraepelin al DSM-IV [Schizophrenia: from Kraepelin to DSM-IV]. Santiago de Chile: Pontificia Universidad Católica de Chile; 1993. Spanish.Google Scholar
  5. 5.
    Kraepelin E. La demencia precoz [Eartly daementia]. Buenos Aires: Polemos; 2008. Spanish.Google Scholar
  6. 6.
    Bleuler E. La esquizofrenia [Schizophrenia] (1926). Rev Asoc Esp Neuropsiquiatr. 1996;60(26):664–76. Spanish.Google Scholar
  7. 7.
    Novella EJ, Huertas R. El síndrome de Kraepelin-Bleuler-Schneider y la conciencia moderna: Una aproximación a la historia de la esquizofrenia [Kraepelin-Bleuler-Schneider’s syndrome and modern conscience: an approach to schizophrenia’s history]. Clín Salud. 2010;21(3):205–19. Spanish.Google Scholar
  8. 8.
    Hoenig J. The concept of schizophrenia. Kraepelin-Bleuler-Schneider. Br J Psychiatry. 1983;142(6):547–56.PubMedGoogle Scholar
  9. 9.
    Pardo V. Trastornos cognitivos en la esquizofrenia I. Estudios cognitivos en pacientes esquizofrénicos: puesta al día [Cognitive traits in schizophrenia I. Cognitive studies on schizophrenic patients: update]. Rev Psiquiátr Uruguay. 2005;69(1):71–83. Spanish.Google Scholar
  10. 10.
    Schneider K. Patopsicología clínica [Clinical patopsychology]. Madrid: Paz Montalvo; 1975. Spanish.Google Scholar
  11. 11.
    Crow TJ. The two-syndrome concept: origins and current status. Schizophr Bull. 1985;11(3):471.PubMedGoogle Scholar
  12. 12.
    Cuesta MJ, Peralta V, Zarzuela A. Neuropsychology and schizophrenia. An Sis San Navarra. 2000;23(1):51–62.Google Scholar
  13. 13.
    Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatr. 2012;169(10):1092–9.PubMedGoogle Scholar
  14. 14.
    Wagner G, Koch K, Schachtzabel C, Schultz CC, Gaser C, Reichenbach JR, Sauer H, Bar KJ, Schlösser RG. Structural basis of the fronto-thalamic disconnectivity in schizophrenia: a combined DCM-VBM study. NeuroImage Clin. 2013;3:95–105.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, Becker B, Liu Y, Kendrick KM, Lu G, Feng J. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain. 2016;139(8):2307–21.PubMedGoogle Scholar
  16. 16.
    Kontaxaki MI, Kattoulas E, Smyrnis N, Stefanis NC. Cognitive impairments and psychopathological parameters in patients of the schizophrenic spectrum. Psychiatrike Psychiatriki. 2013;25(1):27–38.Google Scholar
  17. 17.
    Roux P, Brunet-Gouet E, Passerieux C, Ramus F. Eye-tracking reveals a slowdown of social context processing during intention attribution in patients with schizophrenia. J Psychiatry Neurosci. 2016;41(2):E13.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Han K, Kim I, Kim J. Assessment of cognitive flexibility in real life using virtual reality: a comparison of healthy individuals and schizophrenic patients. Comput Biol Med. 2012;42:841–7.PubMedGoogle Scholar
  19. 19.
    López-Mato A. Esquizofrenias [Schizophrenia]. In: López-mato A, editor. Psiconeuroinmunoendocrinología. Buenos Aires: Polemos; 2002. p. 291–302. Spanish.Google Scholar
  20. 20.
    Martínez G, Ropero C, Funes A, Flores E, Landa AI, Gargiulo PA. AP-7 into the nucleus accumbens disrupts acquisition but do not affect consolidation in a passive avoidance task. Physiol Behav. 2002;76(2):205–12. Spanish.PubMedGoogle Scholar
  21. 21.
    Llano López LH, Caif F, Fraile M, Tinnirello B, Landa de Gargiulo AI, Lafuente JV, Baiardi GC, Gargiulo PA. Differential behavioral profile induced by the injection of dipotassium clorazepate inside brain areas that project to nucleus accumbens septi. Pharmacol Rep. 2013;65(3):566–78.PubMedGoogle Scholar
  22. 22.
    Schultz CC, Wagner G, Koch K, Gaser C, Roebel M, Schachtzabel C, Nenadic I, Reichenbach JR, Sauer H, Schlösser R. The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness – a combined cortical shape analysis. Brain Struct Funct. 2013;218(1):51–8.PubMedGoogle Scholar
  23. 23.
    McGlashan TH, Johannessen JO. Early detection and intervention with schizophrenia. Schizophr Bull. 1996;22(2):201–22.PubMedGoogle Scholar
  24. 24.
    Lieberman JA, Sheitman BB, Kinon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology. 1997;17(4):205–29.PubMedGoogle Scholar
  25. 25.
    Boullosa O. Antipsicóticos [Antipsychotics]. In: López-mato A, editor. Psiconeuroinmunoendocrinología. Buenos Aires: Polemos; 2002. p. 411–20. Spanish.Google Scholar
  26. 26.
    Gargiulo PA, Landa de Gargiulo AI. Glutamate and modeling of schizophrenia symptoms: a review of our findings (1990–2014). Pharmacol Rep. 2014;66:343–52.PubMedGoogle Scholar
  27. 27.
    Barrera A. Los trastornos cognitivos de la esquizofrenia. [Cognitive traits in schizophrenia]. Rev Chil Neuropsicología. 2006;44(3):215–21. Spanish.Google Scholar
  28. 28.
    Harvey PD, Keefe RSE. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatr. 2001;158(2):176–84.PubMedGoogle Scholar
  29. 29.
    De Achával D, et al. Emotion processing and theory of mind in schizophrenia patients and their unaffected first-degree relatives. Neuropsychologia. 2010;48(5):1209–15.PubMedGoogle Scholar
  30. 30.
    Trespalacios JLF, Expósito MDPR, Expósito PQ, Pastor MC, Amador BG. Entre la percepción visual de lo posible y lo imposible en pacientes con esquizofrenia [Among visual perception of possible and impossible in schizophrenic patients]. Psicothema. 2005;17(4):607–13. Spanish.Google Scholar
  31. 31.
    Gargiulo PA. Aproximaciones experimentales a la disfunción perceptual en la esquizofrenia [Experimental approaches to perceptual dysfunction in schizophrenia]. Rev Neurol. 2003;37(6):545–51. Spanish.PubMedGoogle Scholar
  32. 32.
    Conrad K. Die beginnende Schizophrenie. Versuch einer Gestaltannalyse des wahns [The beginning of schizophrenia. Attempt of analysis of the delusion]. Stuttgart: Thieme; 1966. German.Google Scholar
  33. 33.
    Del Vecchio S, Gargiulo PA. Objetivación de la Función Visomotriz en la Esquizofrenia (Visual and motor function in schizophrenic patients). Acta Psiquiát Psicol Am Lat (Acta Psiquiát Psicol Am Lat). 1992;38:317–22.Google Scholar
  34. 34.
    Place EJ, Gilmore GC. Perceptual organization in schizophrenia. J Abnorm Psychol. 1980;89(3):409–18.PubMedGoogle Scholar
  35. 35.
    Wells DS, Leventhal D. Perceptual grouping in schizophrenia: replication of Place and Gilmore. J Abnorm Psychol. 1984;93(2):231–4.PubMedGoogle Scholar
  36. 36.
    Chey J, Holzman PS. Perceptual organization in schizophrenia: utilization of the Gestalt principles. J Abnorm Psychol. 1997;106(4):530.PubMedGoogle Scholar
  37. 37.
    John CH, Hemsley DR. Gestalt perception in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 1992;241(4):215–21.PubMedGoogle Scholar
  38. 38.
    Rief W. Visual perceptual organization in schizophrenic patients. Br J Clin Psychol. 1991;30(4):359–66.PubMedGoogle Scholar
  39. 39.
    Sasson NJ, Pinkham AE, Weittenhiller LP, Faso DJ, Simpson C. Context effects on facial affect recognition in schizophrenia and autism: behavioral and eye-tracking evidence. Schizophr Bull. 2015;  https://doi.org/10.1093/schbul/sbv176.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Trillenberg P, Sprenger A, Talamo S, Herold K, Helmchen C, Verleger R, Lencer R. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2016;1:1–11.Google Scholar
  41. 41.
    Roux P, Passerieux C, Ramus F. An eye-tracking investigation of intentional motion perception in patients with schizophrenia. J Psychiatry Neurosci. 2014;40(2):118–25.Google Scholar
  42. 42.
    Benson PJ, Beedie SA, Shephard E, Giegling I, Rujescu D, Clair DS. Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls with exceptional accuracy. Biol Psychiatry. 2012;72(9):716–24.PubMedGoogle Scholar
  43. 43.
    Ross D, Buchanan R, Medof D, Lahti A, Thaker G. Association between eye tracking disorder in schizophrenia and poor sensory integration. Am J Psychiatr. 1998;155:1352–7.PubMedGoogle Scholar
  44. 44.
    Schwartz BD, Evans WJ. Neuropsysiologic mechanisms of attention deficits in schizophrenia. Neuropsychiatr Neuropsychol Behav Neurol. 1999;12:207–20.Google Scholar
  45. 45.
    Park S, Holzman PS. Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophr Res. 1993;11(1):55–61.PubMedGoogle Scholar
  46. 46.
    Vásquez C, Nieto-Moreno M, Cerviño M, Fuentenebro F. Efectos del incremento de la demanda cognitiva en tareas de atención sostenida en los trastornos esquizofrénicos y la esquizotipia. [Effects of increasement of cognitive demando on vigilance tasks on schizophrenic and schizotypic traits]. Psicothema. 2006;13(2):221–7. Spanish.Google Scholar
  47. 47.
    Vásquez C, López B, Florit A. Procesamiento de la información y esquizofrenia. Hallazgos empíricos y bases teóricas para la rehabilitación. [Information processing and schizophrenia. Empirical findings and theoretical basis to rehabilitation]. In: Aldaz J, Vásquez C, editors. Esquizofrenia: fundamentos psicológicos y psiquiátricos de la rehabilitación. Madrid: Siglo XXI; 1996. p. 23–55. Spanish.Google Scholar
  48. 48.
    Sitskoom MM, Aleman A, Ebisch SJ, Appels MC, Kahn RS. Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophr Res. 2004;71:285–95.Google Scholar
  49. 49.
    Groom MJ, Bates AT, Jackson GM, Calton TG, Liddle PF, Hollis C. Event-related potentials in adolescents with schizophrenia and their siblings: a comparison with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63(8):784–92.PubMedGoogle Scholar
  50. 50.
    Harvey P, Keafe R, Mitropolou V, DuPre R, Roitman L, Mohs S, Slaver L. Attentional markers of vulnerability to schizophrenia: performance of patients with schizotypal an non-schizotypal personality disorders. Psychiatry Res. 1996;60:49–56.Google Scholar
  51. 51.
    Carter CS, Mintun M, Nichols T, Cohen JD. Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O] H2O PET study during single-trial Stroop task performance. Am J Psychiatr. 1997;154(12):1670–5.PubMedGoogle Scholar
  52. 52.
    Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen J. Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry. 1998;155(9):1285–7.PubMedGoogle Scholar
  53. 53.
    Walker E, Kestler L, Bollini A, Hochman KM. Schizophrenia: etiology and course. Annu Rev Psychol. 2004;55:401–30.PubMedGoogle Scholar
  54. 54.
    Luck S, Gold J. The construct of attention in schizophrenia. Biol Psychiatry. 2008;64:34–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Erickson MA, Hahn B, Leonard CJ, Robinson B, Gray B, Luck SJ, Gold J. Impaired working memory capacity is not caused by failures of selective attention in schizophrenia. Schizophr Bull. 2015;41(2):366–73.PubMedGoogle Scholar
  56. 56.
    Sharma T, Antonova L. Cognitive function in schizophrenia: deficits, functional consequences, and future treatment. Psychiatr Clin N Am. 2003;26(1):25–40.Google Scholar
  57. 57.
    Fernández G, Sapognikoff M, Guinjoan S, Orozco D, Agamennoni O. Word processing during reading sentences in patients with schizophrenia: evidences from the eye tracking technique. Compr Psychiatry. 2016;68:193–200.PubMedGoogle Scholar
  58. 58.
    Mitropoulou V, Harvey PD, Zegarelli G, New AS, Silverman JM, Siever LJ. Neuropsychological performance in schizotypal personality disorder: importance of working memory. Am J Psychiatr. 2014;162(10):1896–903.Google Scholar
  59. 59.
    Silver H, Feldman P, Bilker W, Gur RC. Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry. 2014;160(10):1809–16.Google Scholar
  60. 60.
    Johnson MK, McMahon RP, Robinson BM, Harvey AN, Hahn B, Leonard CJ, Luck SJ, Gold JM. The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology. 2013;27(2):220.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ. Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry. 2014;75(5):361–70.PubMedGoogle Scholar
  62. 62.
    Smith MJ, Horan WP, Cobia DJ, Karpouzian TM, Fox JM, Reilly JL, Breiter HC. Performance-based empathy mediates the influence of working memory on social competence in schizophrenia. Schizophr Bull. 2014;40(4):824–34.PubMedGoogle Scholar
  63. 63.
    Cervigni M. Entrenando funciones cognitivas en niños a través de juegos digitales. [Training cognitive functions on childrens among digital games]. Madrid: Publicia; 2013. Spanish.Google Scholar
  64. 64.
    Flores Lázaro JC, Ostrosky-Solís F. Neuropsicología de Lóbulos Frontales, FE y Conducta Humana. [Frontal lobes neuropsychology: executive functions and human behavior]. Rev Neuropsicol Neuropsiquiatr Neurociencias. 2008;8(1):47–58.Google Scholar
  65. 65.
    Ison M, García Coni A. Flexibilidad cognitiva y categorización [Cognitive flexibility and categorization]. In: Vivas J, editor. Evaluación de redes semánticas. Mar del Plata: EUDEM; 2009. p. 257–85. Spanish.Google Scholar
  66. 66.
    Champagne-Lavau M, Charest A, Anselmo K, Rodriguez JP, Blouin G. Theory of mind and context processing in schizophrenia: the role of cognitive flexibility. Psychiatry Res. 2012;200(2):184–92.PubMedGoogle Scholar
  67. 67.
    Gutiérrez-Rojas L, Mulero Santos P, Ortuño Sánchez-Pedreño F. Ejecución del WSCT en pacientes con esquizofrenia. Influencia de las variables clínicas y la preferencia manual [WSCT performance of schizophrenic patients. Influence of clinical variables and hand preferences]. Actas Esp Psiquiatr. 2005;33(3):173–9. Spanish.PubMedGoogle Scholar
  68. 68.
    Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull. 2009;35(2):383–402.PubMedGoogle Scholar
  69. 69.
    Bermazohn PC, Porto L, Arlow PB, Pollack S, Stronger R, Siris SG. A tissue: hierarchical diagnosis in chronic schizophrenia: a clinical study of co-occurring syndromes. Schizophr Bull. 2000;26(3):517.Google Scholar
  70. 70.
    Santamarina S, Iglesias C. Esquizofrenia y sustancias psicotropas de consumo frecuente en nuestro medio. Adicciones. 2001;13(4):385–91.Google Scholar
  71. 71.
    Leyva LS, Mariño TC, Teruel BM. Estudio de agregación familiar en gemelos afectados por esquizofrenia en el municipio Calixto García, provincia Holguín, año 2009. [Familiar aggregation study in schizophrenic twins in the Calixto García municipality, Holguín province on 2009]. Rev Cuba Genet Community. 2012;6(1):40–3. Spanish.Google Scholar
  72. 72.
    Apiquian R, Fresán A, Ulloa RE, García-Anaya M, Lóyzaga C, Nicolini H, Ortega-Soto H. Estudio comparativo de pacientes esquizofrénicos con y sin depresión. [Comparative study of depressed and non-depressed schizophrenic patients]. Salud Ment. 2001;24(5):25–9. Spanish.Google Scholar
  73. 73.
    Cedeño Zayas I, Zarragoitia AI. Esquizofrenia y depresión [Schizophrenia and depression]. 3° Congreso Virtual de Psiquiatría. Murcia, España: Interpsiquis; 2002. Spanish.Google Scholar
  74. 74.
    Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68(2):283–97.PubMedGoogle Scholar
  75. 75.
    Nuechterlein KH, et al. The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatr. 2008;165:203–13.PubMedGoogle Scholar
  76. 76.
    Kern RS, et al. The MATRICS consensus cognitive battery, part 2: co-norming and standardization. Am J Psychiatr. 2008;165:214–20.PubMedGoogle Scholar
  77. 77.
    Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR. A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology. 2000;55(11):1613–20.PubMedGoogle Scholar
  78. 78.
    Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a frontal assessment battery at bedside. Neurology. 2000;55(11):1621–6.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Cornblatt BA, Keilp JG. Impaired attention, genetics and the pathopsychology of schizophrenia. Schizofrenia Bull. 1994;20:31–46.Google Scholar
  80. 80.
    Roca M, Manes F, Cetkovich M, Bruno D, Ibáñez A, Torralva T, Duncan J. The relationship between executive functions and fluid intelligence in schizophrenia. Front Behav Neurosci. 2014;8:46.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Servat P, Lehmann S, Harari A, Gajardo I, Eva C. Evaluación neuropsicológica en esquizofrenia. [Cognitive assessment in schizophrenia]. Rev Chil Neuropsiquiatr. 2005;43(3):210–6. Spanish.Google Scholar
  82. 82.
    Morales Vigil T, Fresán Orellana A, Robles García R, Domínguez Correa M. La terapia cognitivo-conductual y la rehabilitación cognitiva en la esquizofrenia. [Cognitive-behavioral therapy and cognitive rehabilitation in schizophrenia]. Salud Ment. 2015;38(5):371–7. Spanish.Google Scholar
  83. 83.
    McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT. A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatr. 2007;164(12):1791–802.PubMedGoogle Scholar
  84. 84.
    Vargas ML. Rehabilitación cognitiva en la esquizofrenia: Rehabilitación Orientada a Cognits [Cognitive rehabilitation in schizophrenia: cognit-oriented rehabilitation]. Rehabilitación. 2007;7(2):127–34.Google Scholar
  85. 85.
    Fuster JM. The cognit: a network model of cortical representation. Int J Psychophysiol. 2006;60:125–32.PubMedGoogle Scholar
  86. 86.
    Whalley K. Psychiatric disorders: linking genetic risk to pruning. Nat Rev Neurosci. 2016;17(4):199.PubMedGoogle Scholar
  87. 87.
    McGlashan TH, Hoffman RE. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry. 2000;57(7):637–48.PubMedGoogle Scholar
  88. 88.
    Hogarty GE, Flesher S, Ulrich R, Carter M, Greenwald D, Pogue-Geile M, Parepally H. Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Arch Gen Psychiatry. 2004;61(9):866–76.PubMedGoogle Scholar
  89. 89.
    Roder V, Brenner HD, Hodel B, Kienzle N. Terapia integrada de la esquizofrenia [Integrated therapy for schizophrenia]. Barcelona: Ariel psiquiatría; 2016. Spanish.Google Scholar
  90. 90.
    López-Luengo B, Vázquez C. Effects of attention process training on cognitive functioning of schizophrenic patients. Psychiatry Res. 2003;119(1):41–53.PubMedGoogle Scholar
  91. 91.
    Sohlberg MM, Mateer CA. Effectiveness of an attention-training program. J Clin Exp Neuropsychol. 1987;9(2):117–30.PubMedGoogle Scholar
  92. 92.
    Frommann N, Streit M, Wölwer W. Remediation of facial affect recognition impairments in patients with schizophrenia: a new training program. Psychiatry Res. 2003;117(3):281–4.PubMedGoogle Scholar
  93. 93.
    Moragriega Górriz A. Estudio comparativo sobre la eficacia de los tratamientos de rehabilitación cognitiva en pacientes con esquizofrenia de un centro de rehabilitación psicosocial [Comparative study among effectiveness of cognitive rehabilitation treatments in schizophrenic patients from a psicosocial rehabilitation clinic]. Información Psicològica. 2014;98:20–32. Spanish.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guillermo Alfonso
    • 1
    • 2
  • Bruno César Franco
    • 1
    • 2
  • Mauricio Cervigni
    • 1
    • 3
    • 4
    • 5
  • Paola Buedo
    • 6
    • 7
  • Celina Graciela Korzeniowski
    • 8
    • 9
  • Pascual Ángel Gargiulo
    • 10
    • 11
  1. 1.Centro de Investigación en Neurociencias de Rosario [CINR-UNR], Laboratorio de Cognición y Emoción [LabCE] Secretaría de Ciencia y Técnica, Facultad de PsicologíaUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Neuroscience Research Center of Rosario [CINR-UNR], Cognition and Emotion Lab [LabCE], Science and Technology Secretariat, Psychology SchoolNational University of RosarioRosarioArgentina
  3. 3.Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental (CIIPME), Grupo Vinculado (Resolución por parte del Directorio del CONICET Nª 0018/10)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Neuroscience Research Center of Rosario [CINR-UNR], Cognition and Emotion Lab [LabCE], Science and Technology Secretariat, Psychology SchoolNational University of RosarioRosarioArgentina
  5. 5.Interdisciplinary Center for Research in Mathematics and Experimental Psychology [CIIPME]National Council of Scientific and Technical Research [CONICET]Buenos AiresArgentina
  6. 6.Instituto de Investigaciones en Ingeniería Eléctrica [IIIE-CONICET], Universidad Nacional del Sur [UNS]Consejo Nacional de Investigaciones Científicas y TécnicasBahía BlancaArgentina
  7. 7.Electric Engineering Research Institute [IIIE-CONICET]National University of South [UNS]Bahia BlancaArgentina
  8. 8.Instituto de Ciencias Humanas Sociales y Ambientales [INCIHUSA-CONICET], Instituto de Investigaciones, Facultad de PsicologíaUniversidad del AconcaguaMendozaArgentina
  9. 9.Human, Social and Environmental Science Institute of the National Scientific and Technical Research Council [INCIHUSA – CONICET]Technological Scientific Centre [CCT Mendoza- CONICET]MendozaArgentina
  10. 10.Cathedra of Psychopathology, Faculty of Humanities and Educational Sciences, Catholic University of Argentina,MendozaArgentina
  11. 11.Laboratory of Neurosciences and Experimental Psychology, Area of Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, Council of Scientific and Technological Research (CONICET)MendozaArgentina

Personalised recommendations