Bridging Cognitive, Affective, and Social Neuroscience with Education

  • María Cristina RichaudEmail author
  • Vanessa Arán Filippetti
  • Belén Mesurado


In the last 10 years, there has been a growing interest in applying knowledge about the functioning of the human brain to the field of education including reading, writing, and mathematics. On the other hand, recent advances in neuroscience highlight connections between emotion, social functioning, and decision-making. In particular, the neurobiological evidence suggests that social skills, decision-making abilities, and some aspects of cognition related to self-regulated learning, such as executive functions, are deeply affected and subsumed within the processes of emotion. There are, however, different positions, which we will try to summarize, about how to bridge neuroscientific data and theory with educational practices and strategies in the classroom. Indeed, there is an important gap between the inner workings of the brain – which is the level of neuroscience, where various aspects of biology, physiology, and chemistry are concerned with the structure, organization, and development of the brain as a physical organism – and the practical application of knowledge about human behavior to promote effective teaching and learning, which is the field of education. Finally, we will present some results of our research on the effect of executive functions and IQ on mathematical skills such as number production, mental calculus, and arithmetical problems. We will present also results on the role of executive functions on written composition, as well as how the problems in affective developmental affect cognitive and school performance.


Neuroscience Cognition Emotion Education 


  1. 1.
    Geake J. The gifted brain. Recuperado de 2002.
  2. 2.
    De la Barrera ML, Donolo D. Neurociencias y su importancia en contextos de aprendizaje. Revista Digital Universitaria [on line], 10 de abril 2009, 2009;10(4) Available in Internet:, ISSN: 1607–6079. Duckworth A, Seligman M. Self-Discipline Outdoes IQ in Predicting Academic Performance of Adolescents. Psychol Sci. 2005;16 12:939–944.
  3. 3.
    Salas Silva R. La educación necesita realmente de la neurociencia. Estud Pedagógicos (Valdivia). 2003;29:155–71.Google Scholar
  4. 4.
    Goswami U. Neuroscience and education. Br J Educ Psychol. 2004;74:1–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Munakata Y, Casey B, Diamond A. Developmental cognitive neuroscience: progress and potential. Trends Cogn Sci. 2004;8(3):122–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Posner M. Neural systems and individual differences. Teach Coll Rec. 2004;106(1):24–30.CrossRefGoogle Scholar
  7. 7.
    Posner M, Rothbart M. Influencing brain networks: implications for education. Trends Cogn Sci. 2005;9(3):99–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Sereno S, Rayner K. The when and where of reading in the brain. Brain Cogn. 2000;42:78–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Thirunavuukarasuu A, Nowinski W. Radiology-based brain atlas for education. Int Congr Ser. 2003;1256–1288.Google Scholar
  10. 10.
    Voets N, Matthews P. Clinical applications of functional magnetic resonance imaging. Imagen Decis. 2005;9(1):16–22. 1CrossRefGoogle Scholar
  11. 11.
    Joseph J, Noble K, Eden G. The neurobiological basis of reading. J Learn Disabil. 2001;34:566.PubMedCrossRefGoogle Scholar
  12. 12.
    Beeson P, Rapcsak S, Plante E, Chargualaf J, Chung A, Johnson S, Trouard T. The neural substrates of writing: a functional magnetic resonance imaging study. Aphasiology. 2003;17(6–7):647–65.CrossRefGoogle Scholar
  13. 13.
    Blau V, Reithler J, van Atteveldt N, Seitz J, Gerretsen P, Goebel R, Blomert L. Deviant processing of letters and speech sounds as proximate cause of reading failure: a functional magnetic resonance imaging study of dyslexic children. Brain. 2010;133(3):868–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Module BW. Neuroscience: implications for education and lifelong learning. London: The Royal Society; 2011.Google Scholar
  15. 15.
    Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27:3–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Bransford J, Brown A, Cocking R. How people learn: brain, mind, experience and school. Washington, DC: Commission on Behavioral and Social Sciences and Education, National Research Council; 2000.Google Scholar
  17. 17.
    Sylwester R. An educator’s guide to the human brain. Alexandria: Association for Supervision and Curriculum Development; 1995.Google Scholar
  18. 18.
    Lovden M, Backman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework forthe study of adult cognitive plasticity. Psychol Bull. 2010;136(4):659–76. Scholar
  19. 19.
    Rimmele U, et al. A trained body or mind. J Psychophysiol. 2005;19(2):140.Google Scholar
  20. 20.
    Hogarth L, Chase HW, Baess K. Impaired goal-directed behavioural control in human impulsivity. Q J Exp Psychol. 2010;10:1–12.Google Scholar
  21. 21.
    Knudsen EI. Sensitive periods in the development of the brain and behavior. J Cogn Neurosci. 2004;16(8):1412–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Thomas M, Knowland V. Sensitive periods in brain development – implications for education policy. Eur Psychiatr Rev. 2009;2(1):17–20.Google Scholar
  23. 23.
    Hernandez AE, Li P. Age of acquisition: its neural and computational mechanisms. Psychol Bull. 2007;133(4):638–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Richaud MC. Contributions to the study and promotion of resilience in socially vulnerable children. Am Psychol. 2013;68(8):751–8. Scholar
  25. 25.
    Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Woollett K, Spiers HJ, Maguire EA. Talent in the taxi: a model system for exploring expertise. Philos Trans R Soc B. 2009;364(1522):1407–16.CrossRefGoogle Scholar
  27. 27.
    Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci. 2003;23(27):9240–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hanggi J, Koeneke S, Bezzola L, Jancke L. Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp. 2009;31(8):1196–206.Google Scholar
  29. 29.
    Corrigan PW, Yudofsky SC. Cognitive rehabilitation for neuropsychiatric disorders. Washington, DC: American Psychiatric Press; 1996.Google Scholar
  30. 30.
    Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci. 2010;30:14964–71.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Howard-Jones PA, Bogacz R, Demetriou S, Leonards U, Yoo J. From gaming to learning: a reward-based model of decision-making predicts declarative memory performance in a learning game. In: British Psychological Society Annual Conference 2009.Google Scholar
  32. 32.
    Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003;299(5614):1898–902.PubMedCrossRefGoogle Scholar
  33. 33.
    Blakemore SJ, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry. 2006;47:296–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Luna B, Sweeney JA. The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Ann N Y Acad Sci. 2004;1021:296–309.PubMedCrossRefGoogle Scholar
  35. 35.
    Jessel T, Kandel E, Schwartz J. Neurociencia y conducta. Madrid: Prentice Hall; 1997.Google Scholar
  36. 36.
    Souchaya C, Isingrini M. Age related differences in metacognitive control: role of executive functioning. Brain Cogn. 2004;56(1):89–99.CrossRefGoogle Scholar
  37. 37.
    Welsh MC, Pennington BF, Groisser DB. A normative-developmental study of executive function: a window on prefrontal function in children. Dev Neuropsychol. 1991;7(2):131–49.CrossRefGoogle Scholar
  38. 38.
    Arán Filipetti V, Richaud de Minzi MC. Efectos de una propuesta intervención para aumentar la reflexividad y la planificación en un ámbito escolar de alto riesgo por pobreza extrema. Rev Univ Psicológica. 2011;10(2):341–54.Google Scholar
  39. 39.
    Arán Filipetti V, Richaud MC. Modelo de Ecuaciones Estructurales para Analizar la Relación entre la Reflexividad-Impulsividad y las Funciones Ejecutivas en Niños Escolares. Int J Psychol Psychol Ther. 2012;12(3):427–40.Google Scholar
  40. 40.
    Arán Filippetti V, López MB. Predictores de la Comprensión Lectora en Niños y Adolescentes: El papel de la edad, el sexo y las Funciones Ejecutivas. Cuad Neuropsicología. 2016;10:1–23.Google Scholar
  41. 41.
    Musso M. Desarrollo de las Funciones Ejecutivas: un proyecto de intervención en una población infantil de riesgo por pobreza extrema. (Tesis inédita de Doctorado). Universidad de San Luis, San Luis, Argentina 2007.Google Scholar
  42. 42.
    Musso MF, Richaud MC, Cascallar E. Auto-regulación y Funciones Ejecutivas: aportes para comprender el aprendizaje y el desempeño escolar. En: l. E. J. Huaire, A. Elgier y G. Maldonado Paz (Comp.), Psicología Cognitiva y Procesos de Aprendizaje. Aportes desde Latinoamérica. Universidad Nacional de Educación Enrique Guzmán y Valle “Alma Mater del Magisterio Nacional”. Alto Amazonas, Perú, 2015. p. 25–47.Google Scholar
  43. 43.
    Richaud MC, Arán Filippetti V. Children’s cognitive development in social vulnerability: an interventional experience. J Psychol Res. 2015;12(5):684–92. Scholar
  44. 44.
    Fidler DJ, Nadel L. Education and children with down syndrome: neuroscience, development, and intervention. Ment Retard Dev Disabil Res Rev. 2007;13(3):262–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Maurer U, Brem S, Bucher K, Kranz F, Benz R, Steinhausen H-C, Brandeis D. Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain. 2007;130:3200–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA, Eden GF. Development of neural mechanisms for reading. Nat Neurosci. 2003;6(6):767–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Morton J. Understanding developmental disorders; a causal modelling approach. Oxford: Blackwells; 2004.CrossRefGoogle Scholar
  48. 48.
    Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Dehaene S, Zorzi M. Developmental trajectory of number acuityreveals a severe impairment in developmental dyscalculia. Cognition. 2010;116(1):33–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Von Aster MG, Shalev RS. Number development and developmental dyscalculia. Dev Med Child Neurol. 2007;49(11):868–73.CrossRefGoogle Scholar
  50. 50.
    Butterworth B, Laurillard D. Low numeracy and dyscalculia: identification and intervention. ZDM Math Educ Spec Issue Cogn Neurosci Math Learn. 2010;42(6):527–39.Google Scholar
  51. 51.
    Shaul S, Schwartz M. The role of the executive functions in school readiness among preschool-age children. Read Writ. 2014;27(4):749–68. Scholar
  52. 52.
    Jacobson LA, Williford AP, Pianta RC. The role of executive function in children’s competent adjustment to middle school. Child Neuropsychol. 2011;17(3):255–80. Scholar
  53. 53.
    StClair-Thompson HL, Gathercole SE. Executive functions and achievements in school: shifting, updating, inhibition, and working memory. Q J Exp Psychol. 2006;59:745–59.CrossRefGoogle Scholar
  54. 54.
    Thorell LB, Veleiro A, Siu AF, Mohammadi H. Examining the relation between ratings of executive functioning and academic achievement: findings from a cross-cultural study. Child Neuropsychol. 2013;19(6):630–8. Scholar
  55. 55.
    Arán Filippetti V, Richaud MC. Do executive functions predict written composition? Effects beyond age, verbal intelligence and reading comprehension. Acta Neuropsychol. 2015;13(4):331–49.Google Scholar
  56. 56.
    Arán Filippetti V, Richaud MC. A structural equation modeling of executive functions, IQ and mathematical skills in primary students: differential effects on number production, mental calculus and arithmetical problems. Child Neuropsychol. 2017;23:864–88. Scholar
  57. 57.
    Barab S, Plucker J. Smart people or smart contexts? Cognition, ability, and talent development in an age of situated approaches to knowing and learning. Educ Psychol. 2002;37(3):165–82.CrossRefGoogle Scholar
  58. 58.
    Meyer D, Turner J. Discovering emotion in classroom motivation research. Educ Psychol. 2002;37(2):107–14.CrossRefGoogle Scholar
  59. 59.
    Schutz P, Lanehart S. Introduction: emotions in education. Educ Psychol. 2002;37(2):67–8.CrossRefGoogle Scholar
  60. 60.
    Immordino-Yang MH, Damasio A. We feel, therefore we learn: the relevance of affective and social neuroscience to education. Mind Brain Educ. 2007;1(1):3–10.CrossRefGoogle Scholar
  61. 61.
    Davidson RJ, Lewis M, Alloy LB, Amaral DG, Bush G, Cohen J, et al. Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry. 2002;52(6):478–502.PubMedCrossRefGoogle Scholar
  62. 62.
    Posner M, Rothbart M. Developing mechanisms of self-regulation. Dev Psychopathol. 2000;12(3):427–42.CrossRefGoogle Scholar
  63. 63.
    Shonkoff JP, Phillips D, editors. From neurons to neighborhoods: the science of early childhood development, Committee on Integrating the Science of Early Childhood Development. Washington, DC: National Academy Press; 2000.Google Scholar
  64. 64.
    Damasio AR. The feeling of what happened. New York: Harcourt Brace; 1999.Google Scholar
  65. 65.
    Davis EP, Bruce J, Gunnar MR. The anterior attention network: associations with temperament and neuroendocrine activity in 6-year-old children. Dev Psychobiol. 2002;40:43–56.PubMedCrossRefGoogle Scholar
  66. 66.
    LeDoux JE. The emotional brain. New York: Simon & Schuster; 1996.Google Scholar
  67. 67.
    Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Davis HA. Conceptualizing the role and influence of student-teacher relationships on children’ social and cognitive development. Educ Psychol. 2003;38:207–34.CrossRefGoogle Scholar
  69. 69.
    Rueda R. Motivational and cognitive aspects of culturally accommodated instruction: the case of reading comprehension. In: McInerney DM, Dowson M, Etten SV, editors. Effective schools: vol. 6: research on sociocultural influences on motivation and learning. Greenwich: Information Age Publishing; 2006. p. 135–58.Google Scholar
  70. 70.
    Rueda R, August D, Goldenberg C. The sociocultural context in which children acquire literacy. In: August D, Shanahan T, editors. Developing literacy in second-language learners: report of the National Literacy Panel on language-minority children and youth. Mahwah: Erlbaum; 2006. p. 319–40.Google Scholar
  71. 71.
    Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8:1458–63.PubMedCrossRefGoogle Scholar
  72. 72.
    Bechara A, Damasio H. Deciding advantageously before knowing the advantageous strategy. Science. 1997;275:1293–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Trans R Soc (London). 1996;351:1413–20.CrossRefGoogle Scholar
  74. 74.
    Damasio AR. The neurobiological grounding of human values. In: Changeux JP, Damasio AR, Singer W, Christen Y, editors. Neurobiology of human values. London: Springer Verlag; 2005. p. 47–56.CrossRefGoogle Scholar
  75. 75.
    Day C, Leitch R. Teachers’ and teacher educators’ lives: the role of emotion. Teach Teach Educ. 2001;17(4):403–15.CrossRefGoogle Scholar
  76. 76.
    LeDoux J. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Nunley K. Layered curriculum: the workbook. Logan: Jenson Books; 2002.Google Scholar
  78. 78.
    Wolfe P. Brain research and education: fad or foundation? 2009. LOEX Conference proceedings, 2007, 38.
  79. 79.
    Madigan K. Buyer beware: too early to use brain-based strategies. Basis education online edition 45 April 2001 2001.Google Scholar
  80. 80.
    Willingham DT. Three problems in the marriage of neuroscience and education. Cortex. 2009;45(4):544–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Ansari D, Coch D. Bridges over troubled waters: education and cognitive neuroscience. Trends Cogn Sci. 2006;10(4):146–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Barnett WS, Jung K, Yarosz DJ, Thomas J, Hornbeck A, Stechuk R, et al. Educational effects of the tools of the mind curriculum: a randomized trial. Early Childhood Res Q. 2008;23:299–313. Scholar
  83. 83.
    Diamond A, Barnett WS, Thomas J, Munro S. Preschool program improves cognitive control. Science. 2007;30:1387–8. Scholar
  84. 84.
    Arán V, Richaud MC. Socioeconomic status and executive functions in children: implications for a school-based cognitive intervention. In: Perkins G, editor. Socioeconomic status: influences, disparities and current issues (chapter 2). Hauppauge: Nova Editorial Publishers; 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Cristina Richaud
    • 1
    Email author
  • Vanessa Arán Filippetti
    • 1
  • Belén Mesurado
    • 1
  1. 1.Interdisciplinary Centre for Research in Mathematical and Experimental Psychology, Austral University, National Council of Scientific and Technical ResearchBuenos AiresArgentina

Personalised recommendations