Advertisement

Strategies that Influence the Production of Secondary Metabolites in Plants

  • Lina Garcia-Mier
  • Sandra Neli Jimenez-García
  • Cuauhtémoc Sandoval Salazar
  • Luis Miguel Contreras-Medina
  • Karen Esquivel Escalante
  • Carlos Guzman Martinez
  • Juan Fernando García-Trejo
  • Ramon G. Guevara-Gonzalez
  • Ana A. Feregrino-PerezEmail author
Chapter
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)

Abstract

Challenge of today’s agriculture requires the innovative application of techniques and methodologies to increase the production of high nutritional quality food crops with greater vigor and more productivity. In the previous decades, consumers have been looking for foods that not only provide the nutrients (lipids, carbohydrates, and proteins) but also the compounds with health benefits, such as carotenoids, flavonoids, phenols; these are not part of the plant’s primary metabolism but provide protection, attraction, survival, aroma, color, flavor, etc. The production of several of these compounds, known as secondary metabolites, is influenced by a wide range of factors such as biotic and abiotic stresses, types of fertilization, agronomic management, elicitors, and, recently, the presence of nanoparticles, without neglecting the use of biostimulators and biocontrollers, in addition to metabolic engineering manipulation. These factors influence both positively and negatively the production of secondary metabolites, giving the plant strategies for its adaptation and survival, as well as compounds with biological activity that contribute to the health of the human being. In this sense, the present proposal intends to gather relevant and current information on how some of these strategies influence the production of secondary metabolites in plants.

Keywords

Secondary metabolites Nanoparticles Metabolic engineering Biostimulation Biocontrollers Elicitation 

References

  1. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol 22:239–244.  https://doi.org/10.1016/j.copbio.2010
  2. Ahmad F, Ahmad I, Khan MS (2008a) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181CrossRefGoogle Scholar
  3. Ahmad I, Pichtel J, Hayat S (2008b) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, HobokenGoogle Scholar
  4. Ahmad B, Shabbir A, Jaleel H, Khan MMA, Sadiq Y (2018) Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr Plant Biol.  https://doi.org/10.1016/j.cpb.2018.04.002
  5. Ahmed SA, Baig MMV (2014) Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi. J Biol Sci 21:499–504Google Scholar
  6. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2:1–12Google Scholar
  7. Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910CrossRefPubMedPubMedCentralGoogle Scholar
  8. Albrigo L (1999) Effects of foliar applications of urea or nutriphite on flowering and yields of Valencia orange trees. Proc Fla State Hort Soc 112:1–4Google Scholar
  9. Ali AMA, El-Nour MEM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16(2):677–682Google Scholar
  10. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics J 9:9Google Scholar
  11. AL-oubaidi HKM, Kasid NM (2015) Increasing phenolic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharma Res 4:8Google Scholar
  12. Araghi H, Zabihi Z, Nayebi P, Ehsani MM (2016) Growth of CdTe on Si(100) surface by ionized cluster beam technique: experimental and molecular dynamics simulation. Nucl Instr Meth Phys Res B Beam Interact Mater Atoms 385:89–93.  https://doi.org/10.1016/j.nimb.2016.08.018
  13. Aromal SA, Babu KD, Philip D (2012) Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams. Spectrochim Acta Part A Mol Biomol Spectrosc 96:1025–1030.  https://doi.org/10.1016/j.saa.2012.08.010CrossRefGoogle Scholar
  14. Arora NK (ed) (2015) Plant microbes symbiosis: applied fact. Springer, New Delhi, pp 1–381Google Scholar
  15. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705.  https://doi.org/10.1016/j.talanta.2014.08.050CrossRefPubMedGoogle Scholar
  16. Ashkavand P, Tabarimtabari M, Zarafshar M, Tomášková I, Struve D (2016) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedling. J Forest Res Inst 76:9.  https://doi.org/10.1515/frp-2015-0034
  17. Ashraf M, Akram N, Arteca R, Foolad M (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190CrossRefGoogle Scholar
  18. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  19. Avramova Z (2015) Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J 83:149–159CrossRefGoogle Scholar
  20. Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bahreini M, Omidi M, Bondarian F, Gholibaygian M (2015) Metabolites screening of nano elicited in vitro Iranian fennel (Foeniculum vulgare). Am J Biol Life Sci 3:4Google Scholar
  22. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  23. Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48CrossRefGoogle Scholar
  24. Behie SW, Bidochka MJ (2014) Nutrient transfer in plant–fungal symbioses. Trends Plant Sci 19:734–740CrossRefGoogle Scholar
  25. Ben Z, Li Ping Z, Wan Yi L, Jian Wen W (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr Nanosci 9:363–370Google Scholar
  26. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436CrossRefGoogle Scholar
  27. Bertsch F, Ramírez F, Henríquez C (2009) Evaluación del fosfito como fuente fertilizante de fósforo vía radical y foliar. Agron Costarricense 33Google Scholar
  28. Bi F, Iqbal S, Arman M, Ali A, Hassan M-U (2011) Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J Saudi Chem Soc 15:269–273CrossRefGoogle Scholar
  29. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406CrossRefGoogle Scholar
  30. Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–299CrossRefGoogle Scholar
  31. Borbón H, Herrera JM, Calvo M, Sierra HTL, Soto R, Vega I (2012) Antimicrobial activity of most abundant marine macroalgae of the Caribbean coast of Costa Rica. J Asian Sci Res 2:292Google Scholar
  32. Bovy A, de Vos R, Kemper M, Schijlen E, Pertejo MA et al (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14(10):2509–2526CrossRefPubMedPubMedCentralGoogle Scholar
  33. Burgin J, Liu M, Guyot-Sionnest P (2008) Dielectric sensing with deposited gold bipyramids. J Phys Chem C 112:19279–19282.  https://doi.org/10.1021/jp807465p
  34. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root culture. Plant Cell Rep 31:461–477Google Scholar
  35. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  36. Camilios-Neto D, Bonato P, Wassem R, Tadra-Sfeir MZ, Brusamarello-Santos LC et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genom 15(1):378CrossRefGoogle Scholar
  37. Capanoglu E (2010) The potential of priming in food production. Trends Food Sci Tech 21:399–407CrossRefGoogle Scholar
  38. Cardenas-Manríquez G, Vega-Muñoz I, Villagómez-Aranda AL, León-Galvan MF, Cruz-Hernandez A, Torres-Pacheco I et al (2016) Proteomic and metabolomic profiles in transgenic tobacco (N. tabacum xanthi nc) to CchGLP from Capsicum chinense BG-3821 resistant to biotic and abiotic stresses. Environ Exper Bot 130:33–41CrossRefGoogle Scholar
  39. Carswell MC, Grant BR, Plaxton WC (1997) Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta 203:67–74CrossRefGoogle Scholar
  40. Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K et al (2013) Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8(7):e68555CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F et al (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77CrossRefGoogle Scholar
  42. Chauhan R, Keshavkant S, Quraishi A (2018) Enhanced production of diosgenin through elicitation in micro-tubers of Chlorophytum borivilianum. Sant et Fernand Ind Crops Prod 113:234–239CrossRefGoogle Scholar
  43. Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20CrossRefPubMedPubMedCentralGoogle Scholar
  44. Chung I-M, Rekha K, Rajakumar G, Thiruvengadam M (2018) Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Org Cult 12.  https://doi.org/10.1007/s11240-018-1402-0
  45. Ciprian M, Xu P, Chaemchuen S, Tu R, Zhuiykov S, Heynderickx PM, Verpoort F (2018) MoO3 nanoparticle formation on zeolitic imidazolate framework-8 by rotary chemical vapor deposition. Microporous Mesoporous Mater 267:185–191.  https://doi.org/10.1016/j.micromeso.2018.03.028CrossRefGoogle Scholar
  46. Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M (2014) Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci 5:448CrossRefPubMedPubMedCentralGoogle Scholar
  47. Corte L, Dell’Abate MT, Magini A, Migliore M, Felici B, Roscini L et al (2014) Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates—a laboratory multidisciplinary approach. J Sci Food Agric 94(2):235–245CrossRefGoogle Scholar
  48. Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393CrossRefGoogle Scholar
  49. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dannehl D (2018) Effects of electricity on plant responses. Sci Hort 234:382–392CrossRefGoogle Scholar
  51. Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57CrossRefGoogle Scholar
  52. del Rosario Abraham-Juárez M, del Carmen Rocha-Granados M, López MG, Rivera-Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695CrossRefGoogle Scholar
  53. du Jardin P (2012) The science of plant biostimulants—a bibliographic analysis, Ad hoc study report. European CommissionGoogle Scholar
  54. du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14CrossRefGoogle Scholar
  55. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23.  https://doi.org/10.1016/j.btre.2017.03.002CrossRefGoogle Scholar
  56. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotech 3:203–208.  https://doi.org/10.1166/jbn.2007.022CrossRefGoogle Scholar
  57. El-Nabarawy M, El-Kafafi S, Hamza M, Omar M (2015) The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Ann Agric Sci 60:1–9CrossRefGoogle Scholar
  58. Ertani A, Schiavon M, Muscolo A, Nardi S (2013) Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364:145–158CrossRefGoogle Scholar
  59. Eswaranandam S, Salyer J, Chen P, Lee SO (2012) Effect of elicitor spray at different reproductive stages on saponin content of soybean. J Food Sci 77:H81–H86CrossRefGoogle Scholar
  60. FAO (2015) The state of food insecurity in the world 2015: compliance with the international goals for 2015 in relation to hunger: balance of the uneven progressGoogle Scholar
  61. Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic 238:126–137.  https://doi.org/10.1016/j.scienta.2018.03.060
  62. Ferri M, Franceschetti M, Naldrett MJ, Saalbach G, Tassoni A (2014) Effects of chitosan on the protein profile of grape cell culture subcellular fractions. Electrophoresis 35:1685–1692CrossRefGoogle Scholar
  63. Feynman RP (1960) There’s plenty of room at the bottom. A transcript talk at the annual meeting of the American Physical Society at Caltech. Eng Sci Caltech 23:22–36Google Scholar
  64. Förster H, Adaskaveg J, Kim D, Stanghellini M (1998) Effect of phosphite on tomato and pepper plants and on susceptibility of pepper to Phytophthora root and crown rot in hydroponic culture. Plant Dis 82:1165–1170CrossRefGoogle Scholar
  65. Gao W, Sun HX, Xiao H, Cui G, Hillwig ML et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genom 15:73CrossRefGoogle Scholar
  66. Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W (2016) All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles. Org Electron 39:71–76.  https://doi.org/10.1016/j.orgel.2016.09.028CrossRefGoogle Scholar
  67. Gao X, Yan R, Xu L, Ma H (2018) Effect of amorphous phytic acid nanoparticles on the corrosion mitigation performance and stability of sol-gel coatings on cold-rolled steel substrates. J Alloy Compd 747:747–754.  https://doi.org/10.1016/j.jallcom.2018.03.078CrossRefGoogle Scholar
  68. García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24.  https://doi.org/10.1016/j.scitotenv.2017.02.153CrossRefPubMedGoogle Scholar
  69. García-Mier L, Guevara-González RG, Mondragón-Olguín VM, del Rocío Verduzco-Cuellar B, Torres-Pacheco I (2013) Agriculture and bioactives: achieving both crop yield and phytochemicals. Int J Mol Sci 14:4203–4222CrossRefPubMedPubMedCentralGoogle Scholar
  70. Geu-Flores F et al (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138CrossRefGoogle Scholar
  71. Ghidelli M, Mascaretti L, Bricchi BR, Zapelli A, Russo V, Casari CS, Li Bassi A (2018) Engineering plasmonic nanostructured surfaces by pulsed laser deposition. Appl Surf Sci 434:1064–1073.  https://doi.org/10.1016/j.apsusc.2017.11.025CrossRefGoogle Scholar
  72. Ghorbanpour M (2015) Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Ind J Plant Physiol 20:8Google Scholar
  73. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862.  https://doi.org/10.1021/cr0680282CrossRefPubMedGoogle Scholar
  74. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530CrossRefGoogle Scholar
  75. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400.  https://doi.org/10.1038/nmat3890
  76. Gómez-Merino FC, Trejo-Téllez LI (2015) Biostimulant activity of phosphite in horticulture. Sci Hortic 196:82–90Google Scholar
  77. Gontad F, Caricato AP, Cesaria M, Resta V, Taurino A, Colombelli A et al (2017) Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition. App Surf Sci 418:430–436.  https://doi.org/10.1016/j.apsusc.2017.02.032
  78. Gorelick J, Bernstein N (2014) Elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. Adv Agron 124:201–230CrossRefGoogle Scholar
  79. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500Google Scholar
  80. Grzelczak M, Perez-Juste J, Rodriguez-Gonzalez B, Liz-Marzan LM (2006) Influence of silver ions on the growth mode of platinum on gold nanorods. J Mater Chem 16:3946–3951.  https://doi.org/10.1039/B606887ACrossRefGoogle Scholar
  81. Guo K, Soeriyadi AH, Feng H, Prévoteau A, Patil SA, Gooding JJ, Rabaey K (2015) Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems. Bioresour Technol 195:46–50CrossRefGoogle Scholar
  82. Gururaj HB, Giridhar P, Ravishankar GA (2012) Laminarin as a potential non-conventional elicitor for enhancement of capsaicinoid metabolites. Asian J Plant Sci Res 2:490–495Google Scholar
  83. Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 15:797CrossRefGoogle Scholar
  84. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692.  https://doi.org/10.1038/nmat1957CrossRefPubMedGoogle Scholar
  85. Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49CrossRefGoogle Scholar
  86. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:3Google Scholar
  87. Haider MW, Ayyub CM, Pervez MA, Asad HU, Manan A, Raza SA, Ashraf I (2012) Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.). Soil Environ 31(2)Google Scholar
  88. Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Advances in agronomy, vol 130. Elsevier, Amsterdam, pp 141–174Google Scholar
  89. Hamed SM, El-Rhman AAA, Abdel-Raouf N, Ibraheem IB (2018) Role of marine macroalgae in plant protection and improvement for sustainable agriculture technology. Beni-Suef Univ J Basic App Sci 7(1):104–110CrossRefGoogle Scholar
  90. Hariprasad P, Venkateswaran G, Niranjana S (2014) Diversity of cultivable rhizobacteria across tomato growing regions of Karnataka. Biol Control 72:9–16CrossRefGoogle Scholar
  91. Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361.  https://doi.org/10.1007/s10646-008-0225-xCrossRefPubMedGoogle Scholar
  92. Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci Total Environ 571:275–291.  https://doi.org/10.1016/j.scitotenv.2016.07.184CrossRefPubMedGoogle Scholar
  93. Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11:57–61Google Scholar
  94. Henry G, Thonart P, Ongena M (2012) PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnol Agron Soc Environ 16:257–268Google Scholar
  95. Hideg É, Jansen MA, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115CrossRefGoogle Scholar
  96. Hossain Z, Mustafa G, Sakata K, Komatsu S (2016) Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater 304:291–305.  https://doi.org/10.1016/j.jhazmat.2015.10.071CrossRefPubMedGoogle Scholar
  97. Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10Google Scholar
  98. Hunyadi SE, Murphy CJ (2006) Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 16:3929–3935.  https://doi.org/10.1039/B607116CCrossRefGoogle Scholar
  99. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44(14):2154–2157.  https://doi.org/10.1002/anie.200462208CrossRefGoogle Scholar
  100. Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66:493–500CrossRefGoogle Scholar
  101. Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants 9:26–38Google Scholar
  102. Jang J-M, Chung S-W, Choe H-C, Brantley WA (2017) Electrochemical deposition behavior and characterization of Pd-Ag-HAp nanoparticles on ultra-fine TiO2 nanotubes. Surf Coat Technol 320:383–390.  https://doi.org/10.1016/j.surfcoat.2016.12.022CrossRefGoogle Scholar
  103. Javed R, Usman M, Yücesan B, Zia M, Gürel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99.  https://doi.org/10.1016/j.plaphy.2016.05.032
  104. Javed R, Yücesan B, Gurel E (2018a) Hydrogen peroxide-induced steviol glycosides accumulation and enhancement of antioxidant activities in leaf tissues of Stevia rebaudiana Bertoni. Sugar Tech 20:4.  https://doi.org/10.1007/s12355-017-0521-yCrossRefGoogle Scholar
  105. Javed R, Yucesan B, Zia M, Gurel E (2018b) Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech 20:194–201.  https://doi.org/10.1007/s12355-017-0539-1CrossRefGoogle Scholar
  106. Jena BK, Raj CR (2007) Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. J Phys Chem C 111:15146–15153.  https://doi.org/10.1021/jp072363sCrossRefGoogle Scholar
  107. Jeong H, Sung J, Yang J, Kim Y, Jeong HS, Lee J (2018) Effect of sucrose on the functional composition and antioxidant capacity of buckwheat (Fagopyrum esculentum M.) sprouts. J Funct Foods 43:70–76CrossRefGoogle Scholar
  108. Jiang X, Zeng Q, Yu A (2007) Thiol-frozen shape evolution of triangular silver nanoplates. Langmuir 23(4):2218–2223CrossRefGoogle Scholar
  109. Jiang Z, Kempinski C, Bush CJ, Nybo SE, Chappell J (2015) Engineering triterpene and methylated triterpene production in plants provides biochemical and physiological insights into terpene metabolism. Plant Physiol 01548.02015Google Scholar
  110. Jiao J, Gai QY, Wang W, Zang YP, Niu LL, Fu YJ, Wang X (2018) Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger. Ind Crops Prod 112:252–261CrossRefGoogle Scholar
  111. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903.  https://doi.org/10.1126/science.1066541CrossRefPubMedGoogle Scholar
  112. Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C et al (2012) Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353:209–220CrossRefGoogle Scholar
  113. Jisha S, Gouri P, Anith K, Sabu K (2018) Piriformospora indica cell wall extract as the best elicitor for asiaticoside production in Centella asiatica (L.) urban, evidenced by morphological, physiological and molecular analyses. Plant Physiol Biochem 125:106–115CrossRefGoogle Scholar
  114. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414.  https://doi.org/10.1016/j.scitotenv.2008.06.042CrossRefPubMedGoogle Scholar
  115. Kacienė G, Milčė JŽ, Eglė Juknys R (2015) Role of oxidative stress on growth responses of spring barley exposed to different environmental stressors. J Plant Ecol 8:605–616Google Scholar
  116. Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X et al (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327CrossRefGoogle Scholar
  117. Kalteh M, Alipour1 ZT, Ashraf S, Aliabadi MM, FalahNosratabad A (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:7Google Scholar
  118. Kanagendran A, Pazouki L, Niinemets Ü (2018) Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ Exp Bot 145:21–38CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kapteyn JC, Van Den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426:373–383CrossRefGoogle Scholar
  120. Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20:1–9CrossRefGoogle Scholar
  121. Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267CrossRefGoogle Scholar
  122. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM et al (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399CrossRefGoogle Scholar
  123. Khodaei A, Hasannasab M, Amousoltani N, Kermanpur A (2016) Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method. Mater Res Bull 74:212–217.  https://doi.org/10.1016/j.materresbull
  124. Kim F, Connor S, Song H, Kuykendall T, Yang P (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677.  https://doi.org/10.1002/anie.200454216
  125. Kim Y-J, Lee OR, Oh JY, Jang M-G, Yang D-C (2014) Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiol 165:373–387CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kliebenstein DJ, Osbourn A (2012) Making new molecules—evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 15:415–423.  https://doi.org/10.1016/j.pbi.2012.05.005CrossRefPubMedGoogle Scholar
  127. Kozarski MS, Klaus AS, Nikšić MP, van Griensven Leo J, Vrvić MM, Jakovljević DM (2014) Polysaccharides of higher fungi: biological role, structure, and antioxidative activity. Hemijska Industrija 68:305CrossRefGoogle Scholar
  128. Krishnan SS, Siril E (2018) Elicitor mediated adventitious root culture for the large-scale production of anthraquinones from Oldenlandia umbellata L. Ind Crops Prod 114:173–179CrossRefGoogle Scholar
  129. Kumar CS, Sarada DV, Rengasamy R (2008) Seaweed extracts control the leaf spot disease of the medicinal plant Gymnema sylvestre. Indian J Sci Technol 1:1–5Google Scholar
  130. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331CrossRefGoogle Scholar
  131. Lachebi I, Fedala A, Djenizian T, Hadjersi T, Kechouane M (2018) Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates. Surf Coat Tech 343:160–165.  https://doi.org/10.1016/j.surfcoatCrossRefGoogle Scholar
  132. Lajayer BA, Ghorbanpour M, Nikabadi S (2017a) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390CrossRefGoogle Scholar
  133. Lajayer HA, Savaghebi G, Hadian J, Hatami M, Pezhmanmehr M (2017b) Comparison of copper and zinc effects on growth, micro-and macronutrients status and essential oil constituents in pennyroyal (Mentha pulegium L.). Braz J Bot 40:379–388CrossRefGoogle Scholar
  134. Laslo É, György É, Mara G, Tamás É, Ábrahám B, Lányi S (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Protect 40:43–48CrossRefGoogle Scholar
  135. Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349:1224–1228CrossRefGoogle Scholar
  136. Le Mire G, Nguyen ML, Fassotte B, du Jardin P, Verheggen F, Delaplace P, Jijakli MH (2016) Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. BASEGoogle Scholar
  137. Lee S-H, Jeon Y-J (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136Google Scholar
  138. Libralato G, Devoti AC, Zanella M, Sabbioni E, Mičetić I, Manodori L et al (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88.  https://doi.org/10.1016/j.ecoenv.2015.07.024CrossRefPubMedGoogle Scholar
  139. Lin L, Wu J, Ho K-P, Qi S (2001) Ultrasound-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound Med Biol 27:1147–1152CrossRefGoogle Scholar
  140. Lovatt CJ (1990) Foliar phosphorus fertilization of citrus by foliar application of phosphite. Summary Citrus Res 25–26Google Scholar
  141. Lovatt CJ (1998) Managing yield with foliar fertilization. Citrograph 84:8–13Google Scholar
  142. Lu X, Shen Q, Zhang L, Zhang F, Jiang W, Lv Z, Tang K et al (2013) Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Ind Crop Prod 49:380–385CrossRefGoogle Scholar
  143. Maiti A, Maity A, Chini TK (2015) Mode mixing and substrate induced effect on the plasmonic properties of an isolated decahedral gold nanoparticle. J Phys Chem C 119:18537–18545.  https://doi.org/10.1021/acs.jpcc.5b03686CrossRefGoogle Scholar
  144. Matijevic E (1981) Monodispersed metal (hydrous) oxides—a fascinating field of colloid science. Acco Chem Res 14:22–29.  https://doi.org/10.1021/ar00061a004CrossRefGoogle Scholar
  145. Mehrian SK, Heidari R, Rahmani F (2015) Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian J Plant Physiol 20:257–263.  https://doi.org/10.1007/s40502-015-0171-6CrossRefGoogle Scholar
  146. Michalak I, Chojnacka K (2015) Production of seaweed extracts by biological and chemical methods marine algae extracts. Process Products App 121–144Google Scholar
  147. Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45.  https://doi.org/10.1016/j.apsoil.2017.12.004CrossRefGoogle Scholar
  148. Misra P, Shukla PK, Pramanik K, Gautam S, Kole C (2016) Plant nanotechnology. Springer, Cham, Switzerland.  https://doi.org/10.1007/978-3-319-42154-4
  149. Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA (2016) Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalin Water Treat 57:2819–2833CrossRefGoogle Scholar
  150. Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–79CrossRefGoogle Scholar
  151. Mora LV, Taylor A, Paul S, Dawson R, Wang C, Taleb W et al (2018) Impact of silica nanoparticles on the morphology and mechanical properties of sol-gel derived coatings. Surf Coat Tech 342:48–56.  https://doi.org/10.1016/j.surfcoat.2018CrossRefGoogle Scholar
  152. Moreau LM, Ha D-H, Zhang H, Hovden R, Muller DA, Robinson RD (2013) Defining crystalline/amorphous phases of nanoparticles through X-ray absorption spectroscopy and X-ray diffraction: the case of nickel phosphide. Chem Mater 25:2394–2403CrossRefGoogle Scholar
  153. Mosadegh H, Trivellini A, Ferrante A, Lucchesini M, Vernieri P, Mensuali A (2018) Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Sci Hort 229:107–116CrossRefGoogle Scholar
  154. Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri) terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200:27–43CrossRefGoogle Scholar
  155. Murphy CJ et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870.  https://doi.org/10.1021/jp0516846CrossRefPubMedGoogle Scholar
  156. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163.  https://doi.org/10.1016/j.plantsciCrossRefGoogle Scholar
  157. Namdeo A (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharm Rev 1:69–79Google Scholar
  158. Namdeo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–162CrossRefGoogle Scholar
  159. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 7:e35498CrossRefPubMedPubMedCentralGoogle Scholar
  160. Neugart S, Schreiner M (2018) UV B and UV A as eustressors in horticultural and agricultural crops. Sci Hortic 234:370–381CrossRefGoogle Scholar
  161. Neugart S, Baldermann S, Hanschen FS, Klopsch R, Wiesner-Reinhold M, Schreiner M (2018) The intrinsic quality of brassicaceous vegetables: how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 233:460–478CrossRefGoogle Scholar
  162. Ni Y, Chen Z, Kong F, Qiao Y, Kong A, Shan Y (2018) Pony-size Cu nanoparticles confined in N-doped mesoporous carbon by chemical vapor deposition for efficient oxygen electroreduction. Electrochim Acta 272:233–241.  https://doi.org/10.1016/j.electactaCrossRefGoogle Scholar
  163. Ock Y, Kim J, Choi I, Kim DS, Choi M, Lee D (2018) Size-independent unipolar charging of nanoparticles at high concentrations using vapor condensation and its application for improving DMA size-selection efficiency. J Aerosol Sci 121:38–53.  https://doi.org/10.1016/j.jaerosci.2018.04.007
  164. Olivares FL, Aguiar NO, Rosa RCC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hortic 183:100–108CrossRefGoogle Scholar
  165. Oloumi H, Soltaninejad R, Baghizadeh A (2015) The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Indian J Plant Physiol 20:157–161.  https://doi.org/10.1007/s40502-015-0143-x
  166. Owen C, Patron NJ, Huang A, Osbourn A (2017) Harnessing plant metabolic diversity. Curr Opin Chem Biol 40:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  167. Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176:5–16CrossRefGoogle Scholar
  168. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445.  https://doi.org/10.1016/S1360-1385(00)01741-6CrossRefPubMedGoogle Scholar
  169. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274CrossRefGoogle Scholar
  170. Portu J, López R, Baroja E, Santamaría P, Garde-Cerdán T (2016) Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: methyl jasmonate, chitosan, and yeast extract. Food Chem 201:213–221CrossRefGoogle Scholar
  171. Povero G et al (2011) Transcript profiling of chitosan-treated arabidopsis seedlings. J Plant Res 124:619–629CrossRefGoogle Scholar
  172. Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM et al (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768CrossRefGoogle Scholar
  173. Qados AMSA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Exp Agric 5:509–524Google Scholar
  174. Qinghua Z, Xuchuan J, Aibing Y, Gaoqing L (2007) Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology 18:035708CrossRefGoogle Scholar
  175. Radtke H (1993) An economic evaluation of biological control of tansy ragwort. Oregon Department of Agriculture, SalemGoogle Scholar
  176. Raei M, Angaji SA, Omidi M, Khodayar M (2014) Effect of abiotic elicitors on tissue culture of Aloevera. Int J Biosci 5:74–81. http://dx.doi.org/10.12692/ijb/5
  177. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57.  https://doi.org/10.1007/s40003-012-0049-z
  178. Rao RS, Ravishankar G (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153CrossRefGoogle Scholar
  179. Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids—a new class of phytohormones. Curr Sci 1239–1245Google Scholar
  180. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338CrossRefGoogle Scholar
  181. Roy S, Ghosh CK, Sarkar CK (2018) Introduction: motivation for nanotechnology. In: Roy S, Ghosh CK, Sarkar CK (eds) Nanotechnology synthesis to applications, 1st edn. CRC Press, New Jersey, USA, pp 1–4Google Scholar
  182. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121CrossRefGoogle Scholar
  183. Sabaghnia N, Karimizadeh R, Mohammadi M (2014) Graphic analysis of yield stability in new improved lentil (Lens culinaris Medik.) genotypes using nonparametric statistics. Acta Agric Slov 103:14.  https://doi.org/10.14720/aas.2014.103.1.12
  184. Saini RK, Sivanesan I, Keum Y-S (2016) Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech 6:203Google Scholar
  185. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420.  https://doi.org/10.1021/la049463zCrossRefPubMedGoogle Scholar
  186. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804.  https://doi.org/10.1002/adma.200901271CrossRefPubMedGoogle Scholar
  187. Scattino C, Castagna A, Neugart S, Chan HM, Schreiner M, Crisosto CH et al (2014) Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chem 163:51–60CrossRefGoogle Scholar
  188. Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669CrossRefGoogle Scholar
  189. Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 146:26–38CrossRefGoogle Scholar
  190. Shaik S, Chen H, Janardanan D (2011) Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nat Chem 3:19CrossRefGoogle Scholar
  191. Sharafi E, Nekoei SMK, Fotokian MH, Davoodi D, Mirzaei HH, Hasanloo T (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). J Med Plants By-prod 2:7Google Scholar
  192. Shilpa K, Varun K, Lakshmi B (2010) An alternate method of natural drug production: eliciting secondary metabolite production using plant cell culture. J Plant Sci 5:222–247CrossRefGoogle Scholar
  193. Shim JS, Lee OR, Kim YJ, Lee JH, Kim JH, Jung DY et al (2010) Overexpression of PgSQS1 increases ginsenoside production and negatively affects ginseng growth rate in Panax ginseng. J Gins Res 34:98–103CrossRefGoogle Scholar
  194. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948.  https://doi.org/10.1021/jf00018a005CrossRefGoogle Scholar
  195. Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Berlin, pp 1–35Google Scholar
  196. Siddiqui Manzer H, Al‐Whaibi Mohamed H, Faisal M, Al Sahli Abdulaziz A (2014) Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437.  https://doi.org/10.1002/etc.2697
  197. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefGoogle Scholar
  198. Song L, Vijver MG, Peijnenburg WJGM (2015) Comparative toxicity of copper nanoparticles across three Lemnaceae species. Sci Total Environ 518–519:217–224.  https://doi.org/10.1016/j.scitotenv.2015.02.079CrossRefPubMedGoogle Scholar
  199. Stefanelli D, Goodwin I, Jones R (2010) Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients. Food Res Int 43:1833–1843CrossRefGoogle Scholar
  200. Stirk W, Van Staden J (1996) Comparison of cytokinin-and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508CrossRefGoogle Scholar
  201. Straub D, Yang H, Liu Y, Tsap T, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. J Exp Bot 64:4603–4615CrossRefPubMedPubMedCentralGoogle Scholar
  202. Subhramannia M, Pillai VK (2008) Shape-dependent electrocatalytic activity of platinum nanostructures. J Mater Chem 18:5858–5870.  https://doi.org/10.1039/B811149ACrossRefGoogle Scholar
  203. Sudheer S, Yeoh WK, Manickam S, Ali A (2016) Effect of ozone gas as an elicitor to enhance the bioactive compounds in Ganoderma lucidum. Postharvest Biol Technol 117:81–88CrossRefGoogle Scholar
  204. Sun C, Li F, An H, Li Z, Bond AM, Zhang J (2018) Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite. Electrochim Acta 269:733–741.  https://doi.org/10.1016/j.electacta.2018.03.005
  205. Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132CrossRefGoogle Scholar
  206. Thao HTB, Yamakawa T (2009) Phosphite (phosphorous acid): fungicide, fertilizer or bio-stimulator? Soil Sci Plant Nutr 55:228–234CrossRefGoogle Scholar
  207. Trettel JR, Gazim ZC, Gonçalves JE, Stracieri J, Magalhães HM (2018) Effects of copper sulphate (CuSO4) elicitation on the chemical constitution of volatile compounds and the in vitro development of Basil. Sci Hortic 234:19–26CrossRefGoogle Scholar
  208. Van Der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K et al (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752CrossRefGoogle Scholar
  209. Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SDJ, Rico-Garcia E et al (2017) Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci 8:1762CrossRefPubMedPubMedCentralGoogle Scholar
  210. Večeřová K, Večeřa Z, Dočekal B, Oravec M, Pompeiano A, Tříska J, Urban O (2016) Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ Pollut 218:207–218.  https://doi.org/10.1016/j.envpol.2016.05.013CrossRefPubMedGoogle Scholar
  211. Veloz-García R, Marín-Martínez R, Veloz-Rodríguez R, Rodríguez-Guerra R, Torres-Pacheco I et al (2010) Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Ind Crop Prod 31:134–138CrossRefGoogle Scholar
  212. Verrelli E, Tsoukalas D (2014) Cluster beam synthesis of metal and metal-oxide nanoparticles for emerging memories. Solid-State Electron 101:95–105.  https://doi.org/10.1016/j.sse.2014.06.017CrossRefGoogle Scholar
  213. Viacava GE, Goyeneche R, Goñi MG, Roura SI, Agüero MV (2018) Natural elicitors as preharvest treatments to improve postharvest quality of Butterhead lettuce. Sci Hort 228:145–152CrossRefGoogle Scholar
  214. Vosoughi N, Gomarian M, Pirbalouti AG, Khaghani S, Malekpoor F (2018) Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Ind Crops Prod 117:366–374CrossRefGoogle Scholar
  215. Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506CrossRefGoogle Scholar
  216. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M et al (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  217. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175.  https://doi.org/10.1021/jp993593cCrossRefGoogle Scholar
  218. Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agr Ecosyst Environ 141:271–286CrossRefGoogle Scholar
  219. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058Google Scholar
  220. Wu B, Zhu L, Le XC (2017) Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ Pollut 230:302–310.  https://doi.org/10.1016/j.envpol.2017.06.062
  221. Xiao Y, Peijnenburg WJGM, Chen G, Vijver MG (2016) Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Sci Total Environ 563–564:81–88.  https://doi.org/10.1016/j.scitotenv.2016.04.104CrossRefPubMedGoogle Scholar
  222. Yang D, Fang Y, Xia P, Zhang X, Liang Z (2018) Diverse responses of tanshinone biosynthesis to biotic and abiotic elicitors in hairy root cultures of Salvia miltiorrhiza and Salvia castanea Diels f. tomentosa. Gene 643:61–67CrossRefGoogle Scholar
  223. Zhang X, Ervin E, Schmidt R (2003) Seaweed extract, humic acid, and propiconazole improve tall fescue sod heat tolerance and posttransplant quality. Hort Sci 38:440–443CrossRefGoogle Scholar
  224. Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688.  https://doi.org/10.1016/j.tifs.2011.07.003CrossRefGoogle Scholar
  225. Zhao Q, Hou L, Huang R, Li S (2004) Controlled growth of gold nanowhiskers via a soft chemistry method. Mater Chem Phys 85:180–183.  https://doi.org/10.1016/j.matchemphys.2004.01.002CrossRefGoogle Scholar
  226. Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA (2016) 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ Sci Technol 50:2000–2010.  https://doi.org/10.1021/acs.est.5b05011CrossRefPubMedGoogle Scholar
  227. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351CrossRefGoogle Scholar
  228. Zunun-Pérez A, Guevara-Figueroa T, Jimenez-Garcia S, Feregrino-Pérez A, Gautier F, Guevara-González R (2017) Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associated with capsinoids synthesis in Capsicum annuum L. J Biosci (Bangalore) 42:245–250CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lina Garcia-Mier
    • 1
  • Sandra Neli Jimenez-García
    • 2
  • Cuauhtémoc Sandoval Salazar
    • 2
  • Luis Miguel Contreras-Medina
    • 3
  • Karen Esquivel Escalante
    • 3
  • Carlos Guzman Martinez
    • 3
  • Juan Fernando García-Trejo
    • 3
  • Ramon G. Guevara-Gonzalez
    • 3
  • Ana A. Feregrino-Perez
    • 3
    Email author
  1. 1.Health Sciences DivisionUniversity of the Valley of MexicoSanta Rosa Jáuregui, Santiago de QuerétaroMexico
  2. 2.Division of Health Sciences and Engineering, Department of Nursing and ObstetricsUniversity of GuanajuatoCelaya, GuanajuatoMexico
  3. 3.Graduate and Research Division, Engineering FacultyUniversidad Autónoma de QuerétaroSantiago de QuerétaroMexico

Personalised recommendations