Biofortification of Crops with Folates: From Plant Metabolism to Table

  • Rocío Isabel Díaz de la GarzaEmail author
  • Perla Azucena Ramos-Parra
  • Heriberto Rafael Vidal-Limon
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)


Folates are micronutrients, also known as vitamin B9. Folate malnourishment is a global problem that affects human health from conception to old age. Folate nutrition has been ameliorated by mandatory flour fortification with folic acid in several countries; however, there still are populations with folate deficiency. Plants are the primary folate source in the human diet; thus, biofortifying crops with folates can be an alternate strategy to provide the vitamin to populations at risk. Plants synthesize folates in a complex, highly compartmentalized route and, as in other organisms; folates serve as cofactors of enzymes involved in the transfer of one-carbon (1C) groups, known as 1C metabolism. Proof-of-concept folate biofortification has been achieved in crops targeting different edible plant tissues: rice, maize, and common bean seeds, potato tubers, tomato fruit, and lettuce leaves. Engineering strategies included the overexpression of enzymes involved in the biosynthetic route and also protection of the molecule from degradation in planta, as folates are very labile compounds and food processing negatively affects their accumulation. Enhancing folate contents in food crops has required and also generated knowledge about the biochemistry of folate synthesis, transport, 1C metabolism, and stability within plant food matrices. In this chapter, we attempt to cover these aspects and also discuss the potential for developing folate biofortified crop varieties.


Folate Biosynthesis Degradation Transport Stability Biofortification 



Authors’ work is supported by Tecnologico de Monterrey through the Emerging Technologies for Molecular Nutrition Research Chair Fund (GIEE EICIM01) and by the Mexican National Council for Research and Technology, CONACyT, Grant CB-2014-1-243058.


  1. Abilgos Ramos R (2010) Folate profiling in wild and transgenic rice. (Doctoral dissertation) University of NottinghamGoogle Scholar
  2. Akhtar TA, McQuinn RP, Naponelli V, Gregory JF, Giovannoni JJ et al (2008) Tomato-glutamylhydrolases: expression, characterization, and evidence for heterodimer formation. Plant Physiol 148(2):775–785CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akhtar TA, Orsomando G, Mehrshahi P, Lara-Núñez A, Bennett MJ et al (2010) A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant J 64(2):256–266CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson DD, Stover PJ (2009) SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS One 4(6):1–9Google Scholar
  5. Anguera MC, Suh JR, Ghandour H, Nasrallah IM, Selhub J et al (2003) Methenyltetrahydrofolate synthetase regulates folate turnover and accumulation. J Biol Chem 278(32):29856–29862CrossRefPubMedPubMedCentralGoogle Scholar
  6. Araújo JR, Martel F, Borges N, Araújo JM, Keating E (2015) Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Res Rev 22:9–19Google Scholar
  7. Aufreiter S, Iii JFG, Pfeiffer CM, Fazili Z, Kim Y et al (2009) Folate is absorbed across the colon of adults: evidence from cecal infusion of 13C-labeled [6S]-5-formyltetrahydrofolic acid. Am J Clin Nutr 90:116–123CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bailey LB, Stover PJ, Mcnulty H, Fenech MF, Iii JFG et al (2015) Biomarkers of nutrition for development— folate review. J Nutr 145:1–45CrossRefGoogle Scholar
  9. Basset G, Quinlivan EP, Ziemak MJ, de la Garza RD, Fischer M et al (2002) Folate synthesis in plants: the first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proc Natl Acad Sci 99(19):12489–12494CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basset G, Ravanel S, Quinlivan EP, White R, Giovannoni JJ et al (2004) Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J 40(4):453–461CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG et al (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280(41):34823–34831CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bekaert S, Storozhenko S, Mehrshahi P, Bennett MJ, Lambert W et al (2008) Folate biofortification in food plants. Trends Plant Sci 13(1):28–35CrossRefPubMedPubMedCentralGoogle Scholar
  13. Besson V, Rebeille F, Neuburger M, Douce R, Cossins E (1993) Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochem J 292(Pt 2):425–430Google Scholar
  14. Blancquaert D, Van Daele J, Storozhenko S, Stove C, Lambert W et al (2013a) Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol Biol 83(4–5):329–349CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blancquaert D, Storozhenko S, Van Daele J, Stove C, Visser RGF et al (2013b) Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. J Exp Bot 64(12):3899–3909CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S et al (2015) Improving folate (Vitamin B 9) stability in biofortified rice through metabolic engineering. Nat Biotechnol 33(10):1076–1078CrossRefPubMedPubMedCentralGoogle Scholar
  17. Blencowe H, Kancherla V, Moorthie S, Darlison MW, Modell B (2018) Estimates of global and regional prevalence of neural tube defects for 2015: a systematic analysis. Ann NY Acad Sci 1414:31–46CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bozzo GG, Basset GJC, Naponelli V, Noiriel A, Gregory JF et al (2008) Characterization of the folate salvage enzyme p-aminobenzoylglutamate hydrolase in plants. Phytochemistry 69(1):29–37CrossRefPubMedPubMedCentralGoogle Scholar
  19. Butz P, Serfert Y, Garcia AF, Dieterich S, Lindauer R, Bognar A, Tauscher B (2004) Influence of high-pressure treatment at 25°C and 80°C on folates in orange juice and model media. J Food Sci 69(3):SNQ117–SNQ121.Google Scholar
  20. Castorena-Torres F, Ramos-Parra PA, Hernández-Méndez RV, Vargas-García A, García-Rivas G et al (2014) Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model. Plant Foods Hum Nutr 69(1):57–64CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen L, Chan SY, Cossins E (1997) Distribution of folate derivatives and enzymes for synthesis of 10-formyltetrahydrofolate in cytosolic and mitochondrial fractions of pea leaves. Plant Physiol 115:299–309CrossRefPubMedPubMedCentralGoogle Scholar
  22. Clifford AJ, Heid MK, Peerson JM, Bills ND (1991) Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay. J Nutr 121(4):445–453CrossRefPubMedPubMedCentralGoogle Scholar
  23. Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF et al (2008) Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell Online 20(7):1818–1832CrossRefGoogle Scholar
  24. Dang J, Arcot J, Shrestha A (2000) Folate retention in selected processed legumes. Food Chem. Toxicol. 68:295–298Google Scholar
  25. D’hont A, Denoeud F, Aury JM, Baurens FC, Carreel F et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217Google Scholar
  26. de la Garza RD, Quinlivan EP, Klaus SMJ, Basset GJC, Gregory JF et al (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci 101(38):13720–13725CrossRefGoogle Scholar
  27. de la Garza RID, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci 104(10):4218–4222CrossRefGoogle Scholar
  28. De Lepeleire J, Strobbe S, Verstraete J, Blancquaert D, Ambach L et al (2018) Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes. Mol Plant 11(1):175–188CrossRefGoogle Scholar
  29. De Steur H, Gellynck X, Blancquaert D, Lambert W, van der Straeten D, Qaim M (2012) Potential impact and cost-effectiveness of multi-biofortified rice in China. New Biotechnol 29(3):432–442CrossRefGoogle Scholar
  30. De Steur H, Blancquaert D, Gellynck X, Storozhenko S, Liqun G et al (2013) How negative product attributes alter consumer perceptions of folate biofortified rice in a high risk region of China. Int J Biotechnol 12(4):269CrossRefGoogle Scholar
  31. De Steur H, Demont M, Gellynck X, Stein AJ (2017) The social and economic impact of biofortification through genetic modification. Curr Opin Biotechnol 44:161–168CrossRefPubMedPubMedCentralGoogle Scholar
  32. Deikman J, Kline R, Fischer RL (1992) Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol 100(4):2013–2017CrossRefPubMedPubMedCentralGoogle Scholar
  33. Delchier N, Ringling C, Le Grandois J, Aoudé-Werner D, Galland R, Georgé S, Rychlik M, Renard CMGC (2013) Effects of industrial processing on folate content in green vegetables. Food Chem 139(1–4):815–824Google Scholar
  34. Delchier N, Herbig AL, Rychlik M, Renard CMGC (2016) Folates in fruits and vegetables: contents, processing, and stability. Compr Rev Food Sci Food Saf 15(3):506–528CrossRefGoogle Scholar
  35. Dong W, Cheng Z, Wang X, Wang B, Zhang H et al (2011) Determination of folate content in rice germplasm (Oryza sativa L.) using tri-enzyme extraction and microbiological assays. Int J Food Sci Nutr 62(5):537–543Google Scholar
  36. Dong W, Cheng ZJ, Xu JL, Zheng TQ, Wang XL et al (2014) Identification of QTLs underlying folate content in milled rice. J Integr Agric Chin Acad Agric Sci 13(9):1827–1834Google Scholar
  37. Eudes A, Bozzo GG, Waller JC, Naponelli V, Lim EK et al (2008) Metabolism of the folate precursor p-aminobenzoate in plants: glucose ester formation and vacuolar storage. J Biol Chem 283(22):15451–15459CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fabi JP, Mendes LRBC, Lajolo FM, do Nascimento JRO (2010) Transcript profiling of papaya fruit reveals differentially expressed genes associated with fruit ripening. Plant Sci 179(3):225–233Google Scholar
  39. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB (2014) Quantitative flux analysis reveals folate-dependent NADPH production. HHS Public Access 510(7504):298–302Google Scholar
  40. FAO stat (2014) FAO STATISTICAL YEARBOOK. BangkokGoogle Scholar
  41. FNB (1998) Reports and resources by Food and Nutrition BoardGoogle Scholar
  42. García-Salinas C, Ramos-Parra PA, de la Garza RID (2016) Ethylene treatment induces changes in folate profiles in climacteric fruit during postharvest ripening. Postharvest Biol Technol 118:43–50CrossRefGoogle Scholar
  43. Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A et al (2017) Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell 29:2831–2853CrossRefPubMedPubMedCentralGoogle Scholar
  44. Goyer A, Navarrete DA (2007) Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and a microbiological assay. J Agric Food Chem 55(9):3523–3528CrossRefGoogle Scholar
  45. Goyer A, Illarionova V, Roje S, Fischer M, Bacher A et al (2004) Folate biosynthesis in higher plants. cDNA cloning, heterologous expression, and characterization of dihydroneopterin aldolases. Plant Physiol 135:1–9CrossRefGoogle Scholar
  46. Goyer A, Meric Collakova E, de la Garza RD, Quinlivan EP et al (2005) 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J Biol Chem 280(28):26137–26142CrossRefGoogle Scholar
  47. Groth M, Moissiard G, Wirtz M, Wang H, Garcia-Salinas C et al (2016) MTHFD1 controls DNA methylation in Arabidopsis. Nat Commun 7:1–13CrossRefGoogle Scholar
  48. Hanson AD, Gregory JF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62(1):105–125CrossRefGoogle Scholar
  49. Hanson A, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51(1):401–432Google Scholar
  50. Hayashi M, Tanaka M, Yamamoto S, Nakagawa T, Kanai M et al (2017) Plastidial folate prevents starch biosynthesis triggered by sugar influx into non-photosynthetic plastids of Arabidopsis. Plant Cell Physiol 58(8):1328–1338CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hefni M, Witthöft CM (2014) Folate content in processed legume foods commonly consumed in Egypt. LWT - Food Sci Technol 57(1):337–343Google Scholar
  52. Heintz C, Cotton RGH, Blau N (2013) Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Human Mutat 34(7):927–936CrossRefGoogle Scholar
  53. Hoagland RJ (1950) Para-aminobenzoic acid in the treatment of acute rheumatic fever. Am J Med 9:272–274CrossRefGoogle Scholar
  54. Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R et al (2004) Enhancement of folates in plants through metabolic engineering. Proc Natl Acad Sci 101(14):5158–5163CrossRefGoogle Scholar
  55. Hung C-Y, Fan L, Kittur FS, Sun K, Qiu J et al (2013) Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation. Plant Physiol 161(2):1049–1060CrossRefGoogle Scholar
  56. Indrawati C, Arroqui I, Messagie MT, Nguyen A Van, Loey M Hendrickx (2004) Comparative study on pressure and temperature stability of 5-methyltetrahydrofolic acid in model systems and in food products. J Agric Food Chem 52(3):485–492Google Scholar
  57. Iniesta MD, Pérez-Conesa D, García-Alonso J, Ros G, Jesús Periago M (2009) Folate content in tomato (Lycopersicon esculentum) Influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures. J Agric Food Chem 57(11):4739–4745Google Scholar
  58. Ishikawa T, Machida C, Yoshioka Y, Kitano H, Machida Y (2003) The globular arrest1 gene, which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana. Plant J 33(2):235–244CrossRefGoogle Scholar
  59. Jabrin S, Ravanel S, Gambonnet B, Douce R, Rébeillé F (2003) One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol 131:1431–1439CrossRefPubMedPubMedCentralGoogle Scholar
  60. Jha AB, Ashokkumar K, Diapari M, Ambrose SJ, Zhang H, Tar’an B, Bett KE, Vandenberg A, Warkentin TD, Purves RW (2015) Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J Food Compos Anal 42:134–140Google Scholar
  61. Johnson MA (2007) Brief critical review if high folic acid aggravates vitamin B12 deficiency what should be done about it? Nutr Rev 65(10):451–458CrossRefGoogle Scholar
  62. Kariluoto S, Edelmann M, Piironen V (2010) Effects of environment and genotype on folate contents in wheat in the HEALTHGRAIN diversity screen. J Agric Food Chem 58(17):9324–9331CrossRefGoogle Scholar
  63. Khanal S, Shi C, Xue J, Shi J, Rajcan I, Pauls KP, Navabi A (2013) Quantitative trait loci analysis of folate content in common beans (Phaseolus vulgaris L.). Can J Plant Sci 91(2):375–376Google Scholar
  64. Kiekens F, Blancquaert D, Devisscher L, Van Daele J, Stove VV et al (2015) Folates from metabolically engineered rice: a long-term study in rats. Mol Nutr Food Res 59(3):490–500CrossRefGoogle Scholar
  65. Klaus SMJ, Kunji ERS, Bozzo GG, Noiriel A, de la Garza RD et al (2005a) Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids. J Biol Chem 280(46):38457–38463CrossRefGoogle Scholar
  66. Klaus SMJ, Wegkamp A, Sybesma W, Hugenholtz J, Gregory JF et al (2005b) A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Biol Chem 280(7):5274–5280CrossRefGoogle Scholar
  67. Koehler P, Hartmann G, Wieser H, Rychlik M (2007) Changes of folates, dietary fiber, and proteins in wheat as affected by germination. J Agric Food Chem 55(12):4678–4683CrossRefGoogle Scholar
  68. Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47(1):1–45PubMedPubMedCentralGoogle Scholar
  69. Lazar G, Zhang H, Goodman HM (1993) The origin of the bifunctional dihydrofolate reductase-thymidylate synthase isogenes of Arabidopsis thaliana. Plant J 3(5):657–668CrossRefGoogle Scholar
  70. Lelievre J-M, Latche A, Jones B, Bouzayen M, Pech J-C (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739CrossRefGoogle Scholar
  71. Lester GE, Hallman GJ, Pérez JA (2010) γ-Irradiation dose: effects on baby-leaf spinach ascorbic acid, carotenoids, folate, α-tocopherol, and phylloquinone concentrations. J Agric Food Chem 58(8):4901–4906CrossRefGoogle Scholar
  72. Liang Q, Wang K, Liu X, Riaz B, Jiang L, Wan X, Ye X, Zhang C (2019) Improved folate accumulation in genetically modified maize and wheat. J Exp Bot 70(5):1539–1551Google Scholar
  73. Lo A, Polšek D, Sidhu S (2014) Estimating the burden of neural tube defects in low– and middle–income countries. J Glob Health 4(1):1–9CrossRefGoogle Scholar
  74. Lucock M, Yates Z (2009) Folic acid fortification: a double-edged sword. Curr Opin Clin Nutr Metab Care 12(6):555–564CrossRefGoogle Scholar
  75. Luka Z, Pakhomova S, Loukachevitch LV, Egli M, Newcomer ME et al (2007) 5-Methyltetra hydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyl transferase. J Biol Chem 282(6):4069–4075CrossRefGoogle Scholar
  76. Luo J (2015) Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24:31–38CrossRefGoogle Scholar
  77. Luo S, Duan H, Zou Y, Wang C (2017) High pressure processing and post-high pressure storage induce the change of polyglutamyl folate and total folate from different legumes. J Food Sci Technol 54(11):3521–3531Google Scholar
  78. Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170CrossRefGoogle Scholar
  79. McKillop DJ, Pentieva K, Daly D, McPartlin JM, Hughes J, Strain JJ, Scott JM, McNulty H (2002) The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet. Br J Nutr 88(6):681–688Google Scholar
  80. McNulty H, Scott JM (2008) Intake and status of folate and related B-vitamins: considerations and challenges in achieving optimal status. Br J Nutr 99(3):48–54CrossRefGoogle Scholar
  81. Mehrshahi P, Gonzalez-Jorge S, Akhtar TA, Ward JL, Santoyo-Castelazo A et al (2010) Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. Plant J 64(2):267–279CrossRefGoogle Scholar
  82. Melse-Boonstra A, Verhoef P, Konings EJM, van Dusseldorp M, Matser A, Hollman PCH, Meyboom S, Kok FJ, West CE (2002) Influence of processing on total, monoglutamate and polyglutamate folate contents of leeks, cauliflower, and green beans. J Agric Food Chem 50(12):3473–3478Google Scholar
  83. Meng H, Jiang L, Xu B, Guo W, Li J et al (2014) Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness. PLoS ONE 9(7):1–14Google Scholar
  84. Moghissi AA, Pei S, Liu Y (2016) Golden rice: Scientific, regulatory and public information processes of a genetically modified organism. Crit Rev Biotechnol 36(3):535–541PubMedGoogle Scholar
  85. Moreno JI, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41(3):451–463CrossRefGoogle Scholar
  86. Motta C, Delgado I, Sofia Matos A, Bryan Gonzales G, Torres D, Santos M, Chandra-Hioe MV, Arcot J, Castanheira I (2017) Folates in quinoa (Chenopodium quinoa ), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum ): influence of cooking and malting. J Food Compos Anal 64:181–187Google Scholar
  87. Mouillon JM, Ravanel S, Douce R, Rebeille F (2002) Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities. Biochem J 363:313–319CrossRefPubMedPubMedCentralGoogle Scholar
  88. Munyaka AW, Oey I, Verlinde P, Van Loey A, Hendrickx M (2009) Acidification, crushing and thermal treatments can influence the profile and stability of folate poly-γ-glutamates in broccoli (Brassica oleracea L. var. italica). Food Chemistry 117(3):568–575Google Scholar
  89. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci 106(19):7762–7767CrossRefGoogle Scholar
  90. Navarrete O, Van Daele J, Stove C, Lambert W, Van Der Straeten D et al (2012) A folate independent role for cytosolic HPPK/DHPS upon stress in Arabidopsis thaliana. Phytochemistry 73:23–33CrossRefGoogle Scholar
  91. Neuburger M, Rébeillé F, Jourdain A, Nakamura S, Douce R (1996) Mitochondria are a major site for folate and thymidylate synthesis in plants. J Biol Chem 271(16):9466–9472CrossRefGoogle Scholar
  92. Noiriel A, Naponelli V, Bozzo GG, Gregory JF, Hanson AD (2007a) Folate salvage in plants: pterin aldehyde reduction is mediated by multiple non-specific aldehyde reductases. Plant J 51(3):378–389CrossRefGoogle Scholar
  93. Noiriel A, Naponelli V, Gregory JF, Hanson AD (2007b) Pterin and folate salvage plants and Escherichia coli lack capacity to reduce oxidized pterins. Plant Physiol 143(3):1101–1109CrossRefPubMedPubMedCentralGoogle Scholar
  94. Nour JM, Rabinowitz JC (1991) Isolation, characterization, and structural organization of 10-formyltetrahydrofolate synthetase from spinach leaves. J Biol Chem 266(27):18363–18369PubMedPubMedCentralGoogle Scholar
  95. Nour JM, Rabinowitz JC (1992) Isolation and sequencing of the cDNA coding for spinach 10-formyltetrahydrofolate synthetase. Comparisons with the yeast, mammalian, and bacterial proteins. J Biol Chem 267(23):16292–16296Google Scholar
  96. Obeid R, Holzgreve W, Pietrzik K (2013) Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects? J Perinat Med 41(5):469–483CrossRefPubMedPubMedCentralGoogle Scholar
  97. Orsomando G, de la Garza RD, Green BJ, Peng M, Rea PA et al (2005) Plant γ-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J Biol Chem 280(32):28877–28884CrossRefPubMedPubMedCentralGoogle Scholar
  98. Orsomando G, Bozzo GG, de la Garza RD, Basset GJ, Quinlivan EP et al (2006) Evidence for folate-salvage reactions in plants. Plant J 46(3):426–435CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ottenhof HH, Ashurst JL, Whitney HM, Saldanha SA, Schmitzberger F et al (2004) Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. Plant J 37(1):61–72CrossRefPubMedPubMedCentralGoogle Scholar
  100. Palmer AM, Kamynina E, Field MS, Stover PJ (2017) Folate rescues vitamin B 12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability. Proc Natl Acad Sci 114(20):E4095–E4102CrossRefPubMedPubMedCentralGoogle Scholar
  101. Piironen V, Edelmann M, Kariluoto S, Bedo Z (2008) Folate in wheat genotypes in the HEALTHGRAIN diversity screen. J Agric Food Chem 56(21):9726–9731Google Scholar
  102. Plumptre L, Masih SP, Ly A, Aufreiter S, Sohn KJ et al (2015) High concentrations of folate and unmetabolized folic acid in a cohort of pregnant Canadian women and umbilical cord blood. Am J Clin Nutr 102(4):848–857CrossRefPubMedPubMedCentralGoogle Scholar
  103. Puthusseri B, Divya P, Lokesh V, Neelwarne B (2013) Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status. Food Chem 136(2):569–575Google Scholar
  104. Quinlivan EP, Gregory JF 3rd (2007) Reassessing folic acid consumption patterns in the United States (1999–2004): potential effect on neural tube defects and overexposure to folate. Am J Clin Nutr 86(6):1773–1779CrossRefPubMedPubMedCentralGoogle Scholar
  105. Quinlivan EP, Roje S, Basset G, Shachar-Hill Y, Gregory JF et al (2003) The folate precursor p-aminobenzoate is reversibly converted to its glucose ester in the plant cytosol. J Biol Chem 278(23):20731–20737CrossRefPubMedPubMedCentralGoogle Scholar
  106. Raichaudhuri A, Peng M, Naponelli V, Chen S, Sánchez-Fernández R et al (2009) Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo. J Biol Chem 284(13):8449–8460CrossRefPubMedPubMedCentralGoogle Scholar
  107. Ramírez Rivera NG, García-Salinas C, Aragão FJL, de la Garza RID (2016) Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.). Plant Biotechnol J 14:2021–2032CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ramos-Parra PA, Garc C, Herna C (2013) Folate levels and polyglutamylation profiles of papaya (Carica papaya cv. Maradol) during fruit development and ripening. J Agric Food Chem 61(16):3949–3956Google Scholar
  109. Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y et al (2001) Tetrahydrofolate biosynthesis in plants: Molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci 98(26):15360–15365CrossRefPubMedPubMedCentralGoogle Scholar
  110. Ravanel S, Block MA, Rippert P, Jabrin S, Curien G et al (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279(21):22548–22557CrossRefPubMedPubMedCentralGoogle Scholar
  111. Rebeille F, Neuburger M, Douce R (1994) Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J 302:223–228CrossRefPubMedPubMedCentralGoogle Scholar
  112. Reyes-Hernández BJ, Srivastava AC, Ugartechea-Chirino Y, Shishkova S, Ramos-Parra PA et al (2014) The root indeterminacy-to-determinacy developmental switch is operated through a folate-dependent pathway in Arabidopsis thaliana. New Phytol 202(4):1223–1236CrossRefPubMedPubMedCentralGoogle Scholar
  113. Robinson BR, Sathuvalli V, Bamberg J, Goyer A (2015) Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 6(4):1300–1314CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171(2):470–480CrossRefPubMedPubMedCentralGoogle Scholar
  115. Roje S, Wang H, McNeil SD, Raymond RK, Appling DR et al (1999) Isolation, characterization, and functional expression of cDNAs encoding NADH-dependent methylenetetrahydrofolate reductase from higher plants. J Biol Chem 274(51):36089–36096CrossRefPubMedPubMedCentralGoogle Scholar
  116. Roje S, Janave MT, Ziemak MJ, Hanson AD (2002) Cloning and characterization of mitochondrial 5-formyltetrahydrofolate cycloligase from higher plants. J Biol Chem 277(45):42748–42754CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rush D (2000) Nutrition and maternal mortality in the developing world. Am J Clin Nutr 72(1):212–240CrossRefGoogle Scholar
  118. Sahr T, Ravanel S, Basset G, Nichols BP, Hanson AD et al (2006) Folate synthesis in plants: purification, kinetic properties, and inhibition of aminodeoxychorismate synthase. Biochem J 396(1):157–162CrossRefPubMedPubMedCentralGoogle Scholar
  119. Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451(2):145–154CrossRefPubMedPubMedCentralGoogle Scholar
  120. Scheben A, Edwards D (2017) Genome editors take on crops. Science 355(6330):1122–1123CrossRefPubMedPubMedCentralGoogle Scholar
  121. Shohag MJI, Wei Y-Y, Yu N, Zhang J, Wang K, Patring J, He Z-L, Yang X-E (2011) Natural Variation of Folate Content and Composition in Spinach (Spinacia oleracea) Germplasm. J Agric Food Chem 59(23):12520–12526Google Scholar
  122. Srivastava AC, Ramos-Parra PA, Bedair M, Robledo-Hernandez AL, Tang Y et al (2011) The folylpolyglutamate synthetase plastidial isoform is required for postembryonic root development in Arabidopsis. Plant Physiol 155(3):1237–1251CrossRefPubMedPubMedCentralGoogle Scholar
  123. Stea TH, Johansson M, Jägerstad M, Frølich W (2007) Retention of folates in cooked, stored and reheated peas, broccoli and potatoes for use in modern large-scale service systems. Food Chem 101(3):1095–1107Google Scholar
  124. Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D et al (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277–1279CrossRefPubMedPubMedCentralGoogle Scholar
  125. Strålsjö LM, Witthöft CM, Sjöholm IM, Jägerstad MI (2003) Folate content in strawberries (Fragaria × ananassa): effects of cultivar, ripeness, year of harvest, storage, and commercial processing. J Agric Food Chem 51(1):128–133CrossRefPubMedPubMedCentralGoogle Scholar
  126. Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D et al (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77(3):380–392CrossRefPubMedPubMedCentralGoogle Scholar
  127. Upadhyaya P, Tyagi K, Sarma S, Tamboli V, Sreelakshmi Y et al (2017) Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chem 217:610–619CrossRefGoogle Scholar
  128. USDA (2018) United States Department of Agriculture, Agricultural and Research Service. USDA Natl Nutr Database Stand. Ref. Leg. ReleaseGoogle Scholar
  129. Van Wilder V, De Brouwer V, Loizeau K, Gambonnet B, Albrieux C, Van Der Straeten D et al (2018) C1 metabolism and chlorophyll synthesis: the Mg-protoporphyrin IX methyltransferase activity is dependent on the folate status. New Phytol 182(1):137–145CrossRefGoogle Scholar
  130. Verlinde P, Oey I, Hendrickx M, Van Loey A (2008) High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica oleraceae L. cv. Italica) tissue. Food Chemistry 111(1):220–229Google Scholar
  131. Waller JC, Akhtar TA, Lara-Núñez A, Gregory JF, McQuinn RP et al (2009) Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol Plant 3(1):66–77CrossRefGoogle Scholar
  132. Wang C, Riedl KM, Somerville J, Balasubramaniam VM, Schwartz SJ (2011) Influence of high-pressure processing on the profile of polyglutamyl 5-methyltetrahydrofolate in selected vegetables. J Agric Food Chem 59(16):8709–8717Google Scholar
  133. Watanabe S, Ohtani Y, Tatsukami Y, Aoki W, Amemiya T et al (2017) Folate biofortification in hydroponically cultivated spinach by the addition of phenylalanine. J Agric Food Chem 65(23):4605–4610CrossRefGoogle Scholar
  134. Wei Z, Sun K, Sandoval FJ, Cross JM, Gordon C et al (2013) Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana. Arch Biochem Biophys 536(1):87–96CrossRefGoogle Scholar
  135. Wu Z, Ren H, Xiong W, Roje S, Liu Y et al (2018) Methylenetetrahydrofolate reductase modulates methyl metabolism and lignin monomer methylation in maize. J Exp Bot 1–11Google Scholar
  136. Yoneyama T, Hatakeyama K (1998) Decameric GTP cyclohydrolase I forms complexes with two pentameric GTP cyclohydrolase I feedback regulatory proteins in the presence of phenylalanine or of a combination of tetrahydrobiopterin and GTP. J Biol Chem 273(32):20102–20108CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zhang Y, Sun K, Sandoval FJ, Santiago K, Roje S (2010) One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyltransferase. Biochem J 430(1):97–105CrossRefPubMedPubMedCentralGoogle Scholar
  138. Zheng Q, Song J, Campbell-Palmer L, Thompson K, Li L, Walker B et al (2013) A proteomic investigation of apple fruit during ripening and in response to ethylene treatment. J Proteomics 93(2393):276–294CrossRefPubMedPubMedCentralGoogle Scholar
  139. Zhou H, Zhao J, Yang Y, Chen C, Liu Y et al (2012) UBIQUITIN-SPECIFIC PROTEASE16 modulates salt tolerance in Arabidopsis by regulating Na+/H+ antiport activity and serine hydroxymethyltransferase stability. Plant Cell 24(12):5106–5122CrossRefPubMedPubMedCentralGoogle Scholar
  140. Zhou H, Zhang F, Ma Z, Huang H, Jiang L et al (2013) Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis. Plant Cell 25(7):2545–2559CrossRefPubMedPubMedCentralGoogle Scholar
  141. Zimmerman S (2011) Fifteen years of fortifying with folic acid: birth defects are reduced and healthcare expenses are averted. Sight Life 54–59Google Scholar
  142. Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57(1):805–836CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rocío Isabel Díaz de la Garza
    • 1
    Email author
  • Perla Azucena Ramos-Parra
    • 1
  • Heriberto Rafael Vidal-Limon
    • 1
  1. 1.Tecnologico de Monterrey, Escuela de Ingeniería y CienciasMonterreyMexico

Personalised recommendations