Advertisement

Sulfide-Modified NZVI (S-NZVI): Synthesis, Characterization, and Reactivity

  • Yiming SuEmail author
  • Gregory V. Lowry
  • David Jassby
  • Yalei Zhang
Chapter

Abstract

Sulfide-modified nanoscale zerovalent iron (S-NZVI) is attracting more and more attention due to its ease of production, improved reactivity with various pollutants (e.g., trichloroethene, diclofenac, cadmium, chromate), and most importantly, the selectivity to pollutants over water. Although there are some microstructural differences between nanoparticles derived from one-pot and two-step synthesis methods, with optimal S/Fe molar ratio (during preparation), both types of S-NZVI can achieve much higher pollutant removal efficacy than unmodified NZVI. For dechlorination, sulfidation not only inhibits the reaction between Fe(0) and H2O but creates a nucleophilic zone on the particle surface which is favorable for β-elimination. The latter change endows S-NZVI with capacity to degrade particular pollutants which previously cannot be removed by NZVI. For metal ion removal, besides the increased metal removal capacity, the chemical stability of metal-NZVI is also enhanced through sulfidation. Further, sulfidation is beneficial to heterogeneous Fenton-like reactions. With the presence of dissolved oxygen, S-NZVI generates much more hydroxyl radicals for pollutant degradation through a one-electron transfer pathway than NZVI. Although results from lab-scale studies are very encouraging, there is still lack of pilot-scale field test demonstrating the efficacy of S-NZVI in the field. Fate and transport of S-NZVI in subsurface and how S-NZVI (with pollutants) affects microbial community are still largely missing.

Keywords

Nanoscale zerovalent iron Sulfidation Selectivity Synthesis Reactivity Particle life-time 

References

  1. Adeleye, A. S., Stevenson, L. M., Su, Y., Nisbet, R. M., Zhang, Y., & Keller, A. A. (2016). Influence of phytoplankton on fate and effects of modified zerovalent iron nanoparticles. Environmental Science & Technology, 50, 5597–5605. https://doi.org/10.1021/acs.est.5b06251.CrossRefGoogle Scholar
  2. Ai, Z., Lu, L., Li, J., Zhang, L., Qiu, J., & Wu, M. (2007). Fe@Fe2O3 Core-shell nanowires as iron reagent. 1. Efficient degradation of rhodamine by a novel Sono-Fenton process. Journal of Physical Chemistry C, 111, 4087–4093. https://doi.org/10.1021/jp065559l.CrossRefGoogle Scholar
  3. Ai, Z., Gao, Z., Zhang, L., He, W., & Yin, J. J. (2013). Core-shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol. Environmental Science & Technology, 47, 5344–5352. https://doi.org/10.1021/es4005202.CrossRefGoogle Scholar
  4. Bartholomew, C. H., & Bowman, R. M. (1985). Sulfur poisoning of cobalt and iron fischer-tropsch catalysts. Applied Catalysis, 15, 59–67. https://doi.org/10.1016/S0166-9834(00)81487-6.CrossRefGoogle Scholar
  5. Benziger, J., & Madix, R. J. (1980). The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100). Surface Science, 94, 119–153. https://doi.org/10.1016/0039-6028(80)90160-0.CrossRefGoogle Scholar
  6. Bostick, B. C., & Fendorf, S. (2003). Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochimica et Cosmochimica Acta, 67, 909–921. https://doi.org/10.1016/S0016-7037(02)01170-5.CrossRefGoogle Scholar
  7. Butler, E. C., & Hayes, K. F. (1998). Effects of solution composition on the reductive dechlorination of hexachloroethane by iron sulfide, preprint extended abstracts. Environmental Science & Technology, 32, 1276–1284.CrossRefGoogle Scholar
  8. Butler, E. C., & Hayes, K. F. (1999). Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environmental Science & Technology, 33, 2021–2027. https://doi.org/10.1021/es9809455.CrossRefGoogle Scholar
  9. Butler, E. C., & Hayes, K. F. (2000). Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environmental Science & Technology, 34, 422–429.CrossRefGoogle Scholar
  10. Butler, E. C., & Hayes, K. F. (2001). Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environmental Science & Technology, 35, 3884–3891. https://doi.org/10.1021/es010620f.CrossRefGoogle Scholar
  11. Chapman, P. M., Wang, F., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2221–2243. https://doi.org/10.1139/f98-145.CrossRefGoogle Scholar
  12. Du, J., Bao, J., Lu, C., & Werner, D. (2016). Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Research, 102, 73–81. https://doi.org/10.1016/j.watres.2016.06.009.CrossRefGoogle Scholar
  13. Fan, D., Anitori, R. P., Tebo, B. M., Tratnyek, P. G., Pacheco, J. S. L., Kukkadapu, R. K., Engelhard, M. H., Bowden, M. E., Kovarik, L., & Arey, B. W. (2013). Reductive sequestration of pertechnetate (99TcO4-) by nano zerovalent iron (NZVI) transformed by abiotic sulfide. Environmental Science & Technology, 47, 5302–5310. https://doi.org/10.1021/es304829z.CrossRefGoogle Scholar
  14. Fan, D., Anitori, R. P., Tebo, B. M., Tratnyek, P. G., Lezama Pacheco, J. S., Kukkadapu, R. K., Kovarik, L., Engelhard, M. H., & Bowden, M. E. (2014). Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron. Environmental Science & Technology, 48, 7409–7417. https://doi.org/10.1021/es501607s.CrossRefGoogle Scholar
  15. Fan, D., O’Brien Johnson, G., Tratnyek, P. G., & Johnson, R. L. (2016). Sulfidation of nano zerovalent iron (NZVI) for improved selectivity during in situ chemical reduction (ISCR). Environmental Science & Technology, 50, 9558–9565. https://doi.org/10.1021/acs.est.6b02170.CrossRefGoogle Scholar
  16. Feitz, A. J., Joo, S. H., Guan, J., Sun, Q., Sedlak, D. L., & Waite, T. D. (2005). Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 265, 88–94. https://doi.org/10.1016/j.colsurfa.2005.01.038.CrossRefGoogle Scholar
  17. Field, J. A., & Sierra-Alvarez, R. (2004). Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Biotechnology, 3, 185–254. https://doi.org/10.1007/s11157-004-4733-8.CrossRefGoogle Scholar
  18. Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 89, 309–320. https://doi.org/10.1016/j.watres.2015.11.063.CrossRefGoogle Scholar
  19. Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., & Zeng, E. Y. (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595, 743–751. https://doi.org/10.1016/j.scitotenv.2017.03.282.CrossRefGoogle Scholar
  20. Han, Y., & Yan, W. (2016). Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment. Environmental Science & Technology, 50, 12992–13001. https://doi.org/10.1021/acs.est.6b03997.CrossRefGoogle Scholar
  21. Jeong, H. Y., Kim, H., & Hayes, K. F. (2007a). Reductive dechlorination pathways of tetrachloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals. Environmental Science & Technology, 41, 7736–7743.CrossRefGoogle Scholar
  22. Jeong, H. Y., Klaue, B., Blum, J. D., & Hayes, K. F. (2007b). Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environmental Science & Technology, 41, 7699–7705. https://doi.org/10.1021/es070289l.CrossRefGoogle Scholar
  23. Joo, S. H., Feitz, A. J., & Waite, T. D. (2004). Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environmental Science & Technology, 38, 2242–2247. https://doi.org/10.1021/es035157g.CrossRefGoogle Scholar
  24. Keenan, C. R., & Sedlak, D. L. (2008). Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environmental Science & Technology, 42, 1262–1267. https://doi.org/10.1021/es7025664.CrossRefGoogle Scholar
  25. Kim, E. J., Kim, J. H., Azad, A. M., & Chang, Y. S. (2011). Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications. ACS Applied Materials & Interfaces, 3, 1457–1462. https://doi.org/10.1021/am200016v.CrossRefGoogle Scholar
  26. Kim, E. J., Murugesan, K., Kim, J. H., Tratnyek, P. G., & Chang, Y. S. (2013). Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: Effects of water chemistry. Industrial and Engineering Chemistry Research, 52, 9343–9350. https://doi.org/10.1021/ie400165a.CrossRefGoogle Scholar
  27. Kim, E., Kim, J., & Chang, Y. (2014). Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles. Environmental Science & Technology, 48, 4002–4011.CrossRefGoogle Scholar
  28. Kirschling, T. L., Gregory, K. B., Minkley, E. G., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology, 44, 3474–3480. https://doi.org/10.1021/es903744f.CrossRefGoogle Scholar
  29. Kocur, C. M., O’Carroll, D. M., & Sleep, B. E. (2013). Impact of NZVI stability on mobility in porous media. Journal of Contaminant Hydrology, 145, 17–25. https://doi.org/10.1016/j.jconhyd.2012.11.001.CrossRefGoogle Scholar
  30. Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., Sleep, B. E., & O’Carroll, D. M. (2014). Characterization of NZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869. https://doi.org/10.1021/es4044209.CrossRefGoogle Scholar
  31. Kocur, C. M. D., Lomheim, L., Boparai, H. K., Chowdhury, A. I. A., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O’Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49, 8648–8656. https://doi.org/10.1021/acs.est.5b00719.CrossRefGoogle Scholar
  32. Kriegman-King, M. R., & Reinhard, M. (1992). Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environmental Science & Technology, 2206, 2198–2206. https://doi.org/10.1021/es00035a019.CrossRefGoogle Scholar
  33. Kriegman-King, M. R., & Reinhard, M. (1994). Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology, 28, 692–700. https://doi.org/10.1021/es00053a025.CrossRefGoogle Scholar
  34. Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., & O’Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized NZVI and implications for subsurface injection. Environmental Science & Technology, 47, 7332–7340. https://doi.org/10.1021/es3041412.CrossRefGoogle Scholar
  35. Lee, W., & Batchelor, B. (2002). Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environmental Science & Technology, 36, 5147–5154. https://doi.org/10.1021/es025836b.CrossRefGoogle Scholar
  36. Li, X., & Zhang, W. (2007). Sequestration of metal cations with zerovalent iron nanoparticles: A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). The Journal of Physical Chemistry, 111(19), 6939–6946. https://doi.org/10.1021/jp0702189.CrossRefGoogle Scholar
  37. Li, B., & Zhu, J. (2014). Removal of p-chloronitrobenzene from groundwater: Effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process. Chemical Engineering Journal, 255, 225–232. https://doi.org/10.1016/j.cej.2014.06.013.CrossRefGoogle Scholar
  38. Li, X. Q., Cao, J., & Zhang, W. X. (2008). Stoichiometry of Cr(VI) immobilization using nanoscale zero valent iron (NZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial and Engineering Chemistry Research, 47, 2131–2139. https://doi.org/10.1021/ie061655x.CrossRefGoogle Scholar
  39. Li, S., Yan, W., & Zhang, W. (2009). Solvent-free production of nanoscale zero-valent iron (NZVI) with precision milling. Green Chemistry, 11, 1618. https://doi.org/10.1039/b913056j.CrossRefGoogle Scholar
  40. Li, R., Jin, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264, 587–594. https://doi.org/10.1016/j.cej.2014.11.128.CrossRefGoogle Scholar
  41. Li, D., Mao, Z., Zhong, Y., Huang, W., Wu, Y., & Peng, P. (2016). Reductive transformation of tetrabromobisphenol a by sulfidated nano zerovalent iron. Water Research, 103, 1–9. https://doi.org/10.1016/j.watres.2016.07.003.CrossRefGoogle Scholar
  42. Ling, L., & Zhang, W. (2014a). Mapping the reactions of hexavalent chromium [Cr(VI)] in iron nanoparticles using spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analytical Methods, 6, 3211. https://doi.org/10.1039/C4AY00075G.CrossRefGoogle Scholar
  43. Ling, L., & Zhang, W. X. (2014b). Sequestration of arsenate in zero-valent iron nanoparticles: Visualization of intraparticle reactions at angstrom resolution. Environmental Science & Technology Letters, 1, 305–309. https://doi.org/10.1021/ez5001512.CrossRefGoogle Scholar
  44. Ling, L., & Zhang, W. X. (2015). Enrichment and encapsulation of uranium with iron nanoparticle. Journal of the American Chemical Society, 137, 2788–2791. https://doi.org/10.1021/ja510488r.CrossRefGoogle Scholar
  45. Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40, 6085–6090. https://doi.org/10.1021/es060685o.CrossRefGoogle Scholar
  46. Liu, A., & Zhang, W. (2014). Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analyst, 139, 4512. https://doi.org/10.1039/C4AN00679H.CrossRefGoogle Scholar
  47. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39, 1338–1345. https://doi.org/10.1021/es049195r.CrossRefGoogle Scholar
  48. Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41, 7881–7887. https://doi.org/10.1021/es0711967.CrossRefGoogle Scholar
  49. Liu, H., Wang, Q., Wang, C., & Li, X. Z. (2013). Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment. Chemical Engineering Journal, 215–216, 90–95. https://doi.org/10.1016/j.cej.2012.11.010.CrossRefGoogle Scholar
  50. Ma, X., He, D., Jones, A. M., Collins, R. N., & Waite, T. D. (2016). Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study. Journal of Hazardous Materials, 303, 101–110. https://doi.org/10.1016/j.jhazmat.2015.10.009.CrossRefGoogle Scholar
  51. Miller, P. L., Vasudevan, D., Gschwend, P. M., & Roberts, A. L. (1998). Transformation of hexachloroethane in a sulfidic natural water. Environmental Science & Technology, 32, 1269–1275. https://doi.org/10.1021/es970687w.CrossRefGoogle Scholar
  52. Morse, J. W. (1994). Interactions of trace metals with authigenic sulfide minerals: Implications for their bioavailability. Marine Chemistry, 46, 1–6. https://doi.org/10.1016/0304-4203(94)90040-X.CrossRefGoogle Scholar
  53. Morse, J. W., & Arakaki, T. (1993). Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta, 57, 3635–3640. https://doi.org/10.1016/0016-7037(93)90145-M.CrossRefGoogle Scholar
  54. Moyes, L. N., Jones, M. J., Reed, W. A., Livens, F. R., Charnock, J. M., Mosselmans, J. F. W., Hennig, C., Vaughan, D. J., & Pattrick, R. A. D. (2002). An X-ray absorption spectroscopy, study of neptunium(V) reactions with mackinawite (FeS). Environmental Science & Technology, 36, 179–183. https://doi.org/10.1021/es0100928.CrossRefGoogle Scholar
  55. Noradoun, C. E., & Cheng, I. F. (2005). EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system. Environmental Science & Technology, 39, 7158–7163. https://doi.org/10.1021/es050137v.CrossRefGoogle Scholar
  56. Noradoun, C., Engelmann, M. D., McLaughlin, M., Hutcheson, R., Breen, K., Paszczynski, A., & Cheng, I. F. (2003). Destruction of chlorinated phenols by dioxygen activation under aqueous room temperature and pressure conditions. Industrial and Engineering Chemistry Research, 42, 5024–5030. https://doi.org/10.1021/ie030076e.CrossRefGoogle Scholar
  57. Nunez Garcia, A., Boparai, H. K., & Ocarroll, D. M. (2016). Enhanced dechlorination of 1,2-dichloroethane by coupled nano iron-dithionite treatment. Environmental Science & Technology, 50, 5243–5251. https://doi.org/10.1021/acs.est.6b00734.CrossRefGoogle Scholar
  58. Oudar, J. (1980). Sulfur adsorption and poisoning of metallic catalysts. Catalysis Reviews-Science and Engineering, 22, 171–195. https://doi.org/10.1080/03602458008066533.CrossRefGoogle Scholar
  59. Özverdi, A., & Erdem, M. (2006). Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. Journal of Hazardous Materials, 137, 626–632. https://doi.org/10.1016/j.jhazmat.2006.02.051.CrossRefGoogle Scholar
  60. Pang, S. Y., Jiang, J., & Ma, J. (2011). Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45, 307–312. https://doi.org/10.1021/es102401d.CrossRefGoogle Scholar
  61. Prince, R. C., & Dutton, P. L. (1976). Further studies on the rieske iron-sulfur center in mitochondrial and photosynthetic systems: A pK on the oxidized form. FEBS Letters, 65, 117–119.CrossRefGoogle Scholar
  62. Rajajayavel, S. R. C., & Ghoshal, S. (2015). Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Research, 78, 144–153. https://doi.org/10.1016/j.watres.2015.04.009.CrossRefGoogle Scholar
  63. Rayaroth, M. P., Lee, C.-S., Aravind, U. K., Aravindakumar, C. T., & Chang, Y.-S. (2017). Oxidative degradation of benzoic acid using Fe0- and sulfidized Fe0-activated persulfate: A comparative study. Chemical Engineering Journal, 315, 426–436. https://doi.org/10.1016/j.cej.2017.01.031.CrossRefGoogle Scholar
  64. Rickard, D., & Luther, G. W. (2007). Chemistry of iron sulfides. Chemical Reviews, 107, 514–562. https://doi.org/10.1021/cr0503658.CrossRefGoogle Scholar
  65. Shao, D., Ren, X., Wen, J., Hu, S., Xiong, J., Jiang, T., Wang, X., & Wang, X. (2016). Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism. Journal of Hazardous Materials, 302, 1–9. https://doi.org/10.1016/j.jhazmat.2015.09.043.CrossRefGoogle Scholar
  66. Song, S., Su, Y., Adeleye, A. S., Zhang, Y., & Zhou, X. (2017). Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal. Applied Catalysis B: Environmental, 201, 211–220. https://doi.org/10.1016/j.apcatb.2016.07.055.CrossRefGoogle Scholar
  67. Su, Y., Adeleye, A. S., Huang, Y., Sun, X., Dai, C., Zhou, X., Zhang, Y., & Keller, A. A. (2014a). Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (NZVI) and au doped NZVI particles. Water Research, 63, 102–111. https://doi.org/10.1016/j.watres.2014.06.008.CrossRefGoogle Scholar
  68. Su, Y., Adeleye, A. S., Zhou, X., Dai, C., Zhang, W., Keller, A. A., & Zhang, Y. (2014b). Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 504–513. https://doi.org/10.1016/j.jhazmat.2014.08.040.CrossRefGoogle Scholar
  69. Su, Y., Adeleye, A. S., Keller, A. A., Huang, Y., Dai, C., Zhou, X., & Zhang, Y. (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-NZVI) for dissolved metal ion removal. Water Research, 74, 47–57. https://doi.org/10.1016/j.watres.2015.02.004.CrossRefGoogle Scholar
  70. Su, Y., Adeleye, A. S., Huang, Y., Zhou, X., Keller, A. A., & Zhang, Y. (2016). Direct synthesis of novel and reactive sulfide-modified nano iron through nanoparticle seeding for improved cadmium-contaminated water treatment. Scientific Reports, 6, 24358. https://doi.org/10.1038/srep24358.CrossRefGoogle Scholar
  71. Suzuki, I. (2001). Microbial leaching of metals from sulfide minerals. Biotechnology Advances, 19, 119–132. https://doi.org/10.1016/S0734-9750(01)00053-2.CrossRefGoogle Scholar
  72. Tang, J., Tang, L., Feng, H., Zeng, G., Dong, H., Zhang, C., Huang, B., Deng, Y., Wang, J., & Zhou, Y. (2016). pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions. Journal of Hazardous Materials, 320, 581–590. https://doi.org/10.1016/j.jhazmat.2016.07.042.CrossRefGoogle Scholar
  73. Wang, J., & Farrell, J. (2003). Investigating the role of atomic hydrogen on chloroethene reactions with iron using Tafel analysis and electrochemical impedance spectroscopy. Environmental Science & Technology, 37, 3891–3896. https://doi.org/10.1021/es0264605.CrossRefGoogle Scholar
  74. Wang, L., Cao, M., Ai, Z., & Zhang, L. (2014). Dramatically enhanced aerobic atrazine degradation with Fe@Fe 2O3 core-shell nanowires by tetrapolyphosphate. Environmental Science & Technology, 48, 3354–3362. https://doi.org/10.1021/es404741x.CrossRefGoogle Scholar
  75. Xia, X., Ling, L., & Zhang, W. (2017). Genesis of pure Se(0) nano- and micro-structures in wastewater with nanoscale zero-valent iron (NZVI). Environmental Science. Nano, 4, 52–59. https://doi.org/10.1039/C6EN00231E.CrossRefGoogle Scholar
  76. Xu, L., & Wang, J. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186, 256–264. https://doi.org/10.1016/j.jhazmat.2010.10.116.CrossRefGoogle Scholar
  77. Xu, C., Zhang, B., Wang, Y., Shao, Q., Zhou, W., Fan, D., Bandstra, J. Z., Shi, Z., & Tratnyek, P. G. (2016). Effects of Sulfidation magnetization and oxygenation on azo dye reduction by zerovalent iron. Environmental Science & Technology, 50, 11879–11887.CrossRefGoogle Scholar
  78. Zhang, Y., Su, Y., Zhou, X., Dai, C., & Keller, A. A. (2013). A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration. Journal of Hazardous Materials, 263, 685–693. https://doi.org/10.1016/j.jhazmat.2013.10.031.CrossRefGoogle Scholar
  79. Zhang, Y., Li, Y., Dai, C., Zhou, X., & Zhang, W. (2014). Sequestration of Cd(II) with nanoscale zero-valent iron (NZVI): Characterization and test in a two-stage system. Chemical Engineering Journal, 244, 218–226. https://doi.org/10.1016/j.cej.2014.01.061.CrossRefGoogle Scholar
  80. Zhang, Q., Guo, W., Yue, X., Liu, Z., & Li, X. (2016). Degradation of rhodamine B using FeS-coated zero-valent iron nanoparticles in the presence of dissolved oxygen. Environmental Progress & Sustainable Energy, 35, 1673–1678. https://doi.org/10.1002/ep.12412.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yiming Su
    • 1
    Email author
  • Gregory V. Lowry
    • 2
  • David Jassby
    • 1
  • Yalei Zhang
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.State Key Laboratory of Pollution Control and Resource ReuseTongji UniversityShanghaiChina

Personalised recommendations