Colloidal and Surface Science and Engineering for Bare and Polymer-Modified NZVI Applications: Dispersion Stability, Mobility in Porous Media, and Contaminant Specificity

  • Tanapon Phenrat
  • Gregory V. Lowry
  • Peyman Babakhani


This chapter summarizes the fundamentals of colloidal and surface science for understanding poor deliverability and mobility of bare NZVI in the subsurface for in situ remediation. The role of three factors, namely, intrinsic magnetic attraction of NZVI, high particle concentration for remedial application, and unfavorable environmental conditions, on the poor NZVI mobility is fundamentally explained. Moreover, this chapter also describes the state of the art in using polymeric surface modification to provide NZVI characteristics needed for effective in situ remediation (i.e., enhancing NZVI dispersion stability and mobility in porous media and maximizing their affinity to target dense nonaqueous phase liquid source zones). It explains the physicochemical reasons for how polymeric surface modification can overcome dispersion instability, extensive deposition, and contaminant non-targetability.


Nanoscale zerovalent iron Polymer surface modification Aggregation Contaminant targeting Colloidal science Dispersion stability DLVO 


  1. Amorós, J. L., Beltrán, V., Sanz, V., & Jarque, J. C. (2010). Electrokinetic and rheological properties of highly concentrated kaolin dispersions: Influence of particle volume fraction and dispersant concentration. Applied Clay Science, 49, 33–43.CrossRefGoogle Scholar
  2. Aziz, J. J., Serra, C. A., & Wiesner, M. R. (2003). Hydrodynamics of permeable aggregates in differential sedimentation. Environmental Engineering Science, 20, 21–31.CrossRefGoogle Scholar
  3. Baalousha, M. (2017). Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. NanoImpact, 6, 55–68.CrossRefGoogle Scholar
  4. Babakhani, P., Bridge, J., Doong, R.-A., & Phenrat, T. (2017). Parameterization and prediction of nanoparticle transport in porous media: A reanalysis using artificial neural network. Water Resources Research. Scholar
  5. Babakhani, P., Doong, R.-A., & Bridge, J. (2018). Significance of early and late stages of coupled aggregation and sedimentation in the fate of nanoparticles: Measurement and modeling. Environmental Science Technology, 52(15), 8419–8428.CrossRefGoogle Scholar
  6. Basnet, M., Gershanov, A., Wilkinson, K. J., Ghoshal, S., & Tufenkji, N. (2016). Interaction between palladium-doped zerovalent iron nanoparticles and biofilm in granular porous media: Characterization, transport and viability. Environmental Science: Nano, 3, 127.Google Scholar
  7. Baumann, T., Keller, A. A., Auset-Vallejo, M., & Lowry, G. V. (2005). Micromodel study of transport issues during TCE dechlorination by ZVI colloids. American Geophysical Union Fall Meeting, San Francisco, CA.Google Scholar
  8. Becker, M. D., Wang, Y., Pennell, K. D., & Abriola, L. M. (2015). A multi-constituent site blocking model for nanoparticle and stabilizing agent transport in porous media. Environmental Science: Nano, 2, 155–166.Google Scholar
  9. Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116, 35–46.CrossRefGoogle Scholar
  10. Berge, N. D., & Ramsburg, C. A. (2010). Iron-mediated trichloroethene reduction within nonaqueous phase liquid. Journal of Contaminant Hydrology, 118, 105–116.CrossRefGoogle Scholar
  11. Bradford, S. A., Simunek, J., Bettahar, M., van Genuchten, M. T., & Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 37, 2242–2250.CrossRefGoogle Scholar
  12. Bradford, S. A., Torkzaban, S., & Simunek, J. (2011). Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resources Research, 47, W10503.CrossRefGoogle Scholar
  13. Busch, J., Meißner, T., Potthoff, A., Bleyl, S., Georgi, A., Mackenzie, K., Trabitzsch, R., Werban, U., & Oswald, S. E. (2015). A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Journal of Contaminant Hydrology, 181, 59–68.CrossRefGoogle Scholar
  14. Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Reviews of Modern Physics, 15, 1.CrossRefGoogle Scholar
  15. Chen, K. L., & Elimelech, M. (2006). Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22, 10994–11001.CrossRefGoogle Scholar
  16. Chowdhury, A. I. A., O’Carroll, D. M., Xu, Y., & Sleep, B. E. (2012). Electrophoresis enhanced transport of nano-scale zero valent iron. Advances in Water Resources, 40, 71–82.CrossRefGoogle Scholar
  17. Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43, 3717–3726.CrossRefGoogle Scholar
  18. Elimelech, M., Gregory, J., & Jia, X. (1998a). Particle deposition and aggregation: Measurement, modelling and simulation. Woburn: Butterworth-Heinemann.Google Scholar
  19. Elimelech, M., Jia, X., Gregory, J., & Williams, R. (1998b). Particle deposition and aggregation: Measurement, modelling and simulation. Amsterdam: Elsevier.Google Scholar
  20. Elimelech, M., Nagai, M., Ko, C.-H., & Ryan, J. N. (2000). Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environmental Science & Technology, 34, 2143–2148.CrossRefGoogle Scholar
  21. Elliott, D. W., & Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.CrossRefGoogle Scholar
  22. Evans, D. F., & Wennerstrom, H. (1999). The colloidal domain; where physics, chemistry, biology, and technology meet. New York: Wiley-VCH.Google Scholar
  23. Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H.-J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131, 9–28.CrossRefGoogle Scholar
  24. Golmohamadi, M., Clark, R. J., Veinot, J. G. C., & Wilkinson, K. J. (2013). The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals, nTiO2, nAu) in a biofilm. Environmental Chemistry, 10, 34–41.CrossRefGoogle Scholar
  25. Grant, G. P., & Gerhard, J. I. (2007). Simulating the dissolution of a complex dense nonaqueous phase liquid source zone: 1. Model to predict interfacial area. Water Resources Research, 43, W12410.Google Scholar
  26. He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46, 29–34.CrossRefGoogle Scholar
  27. He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.CrossRefGoogle Scholar
  28. He, J.-Z., Li, C.-C., Wang, D.-J., & Zhou, D.-M. (2015). Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. Journal of Hazardous Materials, 300, 467–474.CrossRefGoogle Scholar
  29. Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation—A case study. Remediation Journal, 16, 57–77.CrossRefGoogle Scholar
  30. Holmboe, M., Wold, S., Jonsson, M., & Garcia-Garcia, S. (2009). Effects of γ-irradiation on the stability of colloidal Na+-Montmorillonite dispersions. Applied Clay Science, 43, 86–90.CrossRefGoogle Scholar
  31. Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality, 39, 1909–1924.CrossRefGoogle Scholar
  32. Hounslow, M. J., Ryall, R. L., & Marshall, V. R. (1988). A discretized population balance for nucleation, growth, and aggregation. AICHE Journal, 34, 1821–1832.CrossRefGoogle Scholar
  33. Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., & Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures environ. Science and Technology, 41, 6418–6424.CrossRefGoogle Scholar
  34. Jeldres, R. I., Concha, F., & Toledo, P. G. (2015). Population balance modelling of particle flocculation with attention to aggregate restructuring and permeability. Advances in Colloid and Interface Science, 224, 62–71.CrossRefGoogle Scholar
  35. Jiang, X., Wang, X., Tong, M., & Kim, H. (2013). Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Environmental Pollution, 174, 38–49.CrossRefGoogle Scholar
  36. Johnson, C. P., Li, X., & Logan, B. E. (1996). Settling velocities of fractal aggregates. Environmental Science & Technology, 30, 1911–1918.CrossRefGoogle Scholar
  37. Johnson, R. L., Nurmi, J. T., O'Brien Johnson, G. S., Fan, D., O'Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47, 1573–1580.CrossRefGoogle Scholar
  38. Jordan, M., Shetty, N., Zenker, M. J., & Brownfield, C. (2013). Remediation of a former dry cleaner using nanoscale zero valent iron. Remediation Journal, 24, 31–48.CrossRefGoogle Scholar
  39. Kim, H.-J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2012). Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science, 370, 1–10.CrossRefGoogle Scholar
  40. Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., & Matheis, A. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environmental Earth Sciences, 72, 3339–3352.CrossRefGoogle Scholar
  41. Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., & Sleep, B. E. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869.CrossRefGoogle Scholar
  42. Krupp, H. K., Biggar, J. W., & Nielsen, D. R. (1972). Relative flow rates of salt and water in soil. Soil Science Society of America Journal, 36, 412–417.CrossRefGoogle Scholar
  43. Kumar, S., & Ramkrishna, D. (1996a). On the solution of population balance equations by discretization—I. A fixed pivot technique. Chemical Engineering Science, 51, 1311–1332.CrossRefGoogle Scholar
  44. Kumar, S., & Ramkrishna, D. (1996b). On the solution of population balance equations by discretization—II. A moving pivot technique. Chemical Engineering Science, 51, 1333–1342.CrossRefGoogle Scholar
  45. Lattuada, M., Wu, H., Sandkühler, P., Sefcik, J., & Morbidelli, M. (2004). Modelling of aggregation kinetics of colloidal systems and its validation by light scattering measurements. Chemical Engineering Science, 59, 1783–1798.CrossRefGoogle Scholar
  46. Lee, D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S., & Autenrieth, R. L. (2000). Modeling coagulation kinetics incorporating fractal theories: A fractal rectilinear approach. Water Research, 34, 1987–2000.CrossRefGoogle Scholar
  47. Leeson, A., Kavanaugh, M. C., Marqusee, J. A., Smith, B., Stroo, H., Unger, M., Vogel, C., & Ward, C. H. (2003). Remediating chlorinated source zones. Environmental Science & Technology, 37, 224A–230A.CrossRefGoogle Scholar
  48. Li, X.-Y., & Logan, B. E. (2001). Permeability of fractal aggregates. Water Research, 35, 3373–3380.CrossRefGoogle Scholar
  49. Li, Z., Hassan, A. A., Sahle-Demessie, E., & Sorial, G. A. (2013). Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Research, 47, 6457–6466.CrossRefGoogle Scholar
  50. Liang, Y., Bradford, S. A., Simunek, J., Vereecken, H., & Klumpp, E. (2013). Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Research, 47, 2572–2582.CrossRefGoogle Scholar
  51. Lister, J., Smit, D., & Hounslow, M. (1995). Adjustable discretized population balance for growth and aggregation. AICHE Journal, 41, 591–603.CrossRefGoogle Scholar
  52. Liu, Y., Choi, H., Dionysiou, D., & Lowry, G. V. (2005). TCE hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17, 5315–5322.CrossRefGoogle Scholar
  53. Liu, Y., Phenrat, T., Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science and Technology, 41, 7881–7887.CrossRefGoogle Scholar
  54. Liu, L., Gao, B., Wu, L., Yang, L., Zhou, Z., & Wang, H. (2013). Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media. Journal of Nanoparticle Research, 15, 1–8.Google Scholar
  55. Logan, B. E., & Hunt, J. R. (1987). Advantages to microbes of growth in permeable aggregates in marine systems. Limnology and Oceanography, 32, 1034–1048.CrossRefGoogle Scholar
  56. Lowry, G. V. (2007). Nanomaterials for groundwater remediation. In M. R. Wiesner & J.-Y. Bottero (Eds.), Environmental nanotechnology: Applications and impacts of nanomaterials. New York: McGraw-Hill.Google Scholar
  57. Merkus, H. G. (2009). Particle size measurements: Fundamentals, practice, quality. New York: Springer Science & Business Media.Google Scholar
  58. Louie, S., Tilton, R., Lowry, G. V. (2016). Nanoparticle Macromolecular Coatings and Their Impact on Critical Physicochemical Processes Controlling Environmental Fate and Effects of Nanomaterials. ES: Nano. 3, 283–310Google Scholar
  59. Miller, C. T., Poirer-McNeill, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resources Research, 26, 2783–2796.CrossRefGoogle Scholar
  60. Mitzel, M. R., & Tufenkji, N. (2014). Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environmental Science & Technology, 48, 2715–2723.CrossRefGoogle Scholar
  61. Molnar, I. L., Johnson, W. P., Gerhard, J. I., Willson, C. S., & O'Carroll, D. M. (2015). Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51, 6804.CrossRefGoogle Scholar
  62. Mun, E. A., Hannell, C., Rogers, S. E., Hole, P., Williams, A. C., & Khutoryanskiy, V. V. (2013). On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions. Langmuir, 30, 308–317.CrossRefGoogle Scholar
  63. Neale, G., Epstein, N., & Nader, W. (1973). Creeping flow relative to permeable spheres. Chemical Engineering Science, 28, 1865–1874.CrossRefGoogle Scholar
  64. Phenrat, T., & Kumloet, I. (2016). Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Water Research, 107, 19–28.CrossRefGoogle Scholar
  65. Phenrat, T., & Lowry, G. V. (2009). Physicochemistry of polyelectrolyte coatings that increase stability, mobility, and contaminant specificity of reactive nanoparticles used for groundwater remediatio. In N. Savage, M. Diallo, J. Duncan, A. Street, & R. Sustich (Eds.), Nanotechnology applications: Solutions for improving water quality (pp. 249–267). New York: William Andrew Publisher.CrossRefGoogle Scholar
  66. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.CrossRefGoogle Scholar
  67. Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10, 795–814.CrossRefGoogle Scholar
  68. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.CrossRefGoogle Scholar
  69. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009b). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.CrossRefGoogle Scholar
  70. Phenrat, T., Cihan, A., Kim, H.-J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010a). Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content, and coatings. Environmental Science & Technology, 44, 9086–9093.CrossRefGoogle Scholar
  71. Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010b). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environmental Science & Technology, 44, 4531–4538.CrossRefGoogle Scholar
  72. Phenrat, T., Crimi, M., Illanagasekare, T., & Lowry, G. V. (2011a). Reactive nanoparticles for the treatment of chlorinated dense nonaqueous phase liquids in soil and groundwater. In M. Ram, E. S. Andreescu, & D. Hanming (Eds.), Nanotechnology for environmental decontamination (pp. 271–322). New York: McGraw-Hill Publisher.Google Scholar
  73. Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011b). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45, 6102–6109.CrossRefGoogle Scholar
  74. Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2015). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research, 25, 7157–7169.CrossRefGoogle Scholar
  75. Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50, 872–880.CrossRefGoogle Scholar
  76. Ryan, J. N., & Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids and Surfaces A, 107, 1–56.CrossRefGoogle Scholar
  77. Saba, T., & Illangasekare, T. H. (2000). Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resources Research, 36, 971–980.CrossRefGoogle Scholar
  78. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.CrossRefGoogle Scholar
  79. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.CrossRefGoogle Scholar
  80. Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns environ. Science and Technology, 42, 3349–3355.CrossRefGoogle Scholar
  81. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.CrossRefGoogle Scholar
  82. Smoluchowski, M. (1917). Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift fuer Physikalische Chemie, 92, 129–168.Google Scholar
  83. Sterling, M. C., Bonner, J. S., Ernest, A. N. S., Page, C. A., & Autenrieth, R. L. (2005). Application of fractal flocculation and vertical transport model to aquatic sol–sediment systems. Water Research, 39, 1818–1830.CrossRefGoogle Scholar
  84. Taghavy, A., Costanza, J., Pennell, K. D., & Abrio, L. M. (2010). Effectiveness of nanoscale zero-valent iron for treatment of a PCE–DNAPL source zone. Journal of Contaminant Hydrology, 118, 128–142.CrossRefGoogle Scholar
  85. Thill, A., Moustier, S., Aziz, J., Wiesner, M. R., & Bottero, J. Y. (2001). Flocs restructuring during aggregation: Experimental evidence and numerical simulation. Journal of Colloid and Interface Science, 243, 171–182.CrossRefGoogle Scholar
  86. Tian, Y., Gao, B., Wang, Y., Morales, V. L., Carpena, R. M., Huang, Q., & Yang, L. (2012). Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. Journal of Hazardous Materials, 213, 265–272.CrossRefGoogle Scholar
  87. Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.CrossRefGoogle Scholar
  88. Tiraferri, A., Chen, K.-L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.CrossRefGoogle Scholar
  89. Tombacz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75–94.CrossRefGoogle Scholar
  90. Torkzaban, S., Tazehkand, S. S., Walker, S. L., & Bradford, S. A. (2008). Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Water Resources Research, 44, W04403.CrossRefGoogle Scholar
  91. Torkzaban, S., Wan, J., Tokunaga, T. K., & Bradford, S. A. (2012). Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. Journal of Contaminant Hydrology, 136, 86–95.CrossRefGoogle Scholar
  92. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.CrossRefGoogle Scholar
  93. Tripathi, S., Champagne, D., & Tufenkji, N. (2011). Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Environmental Science & Technology, 46, 6942–6949.CrossRefGoogle Scholar
  94. Tsujimoto, Y., Chassagne, C., & Adachi, Y. (2013). Dielectric and electrophoretic response of montmorillonite particles as function of ionic strength. Journal of Colloid and Interface Science, 404, 72–79.CrossRefGoogle Scholar
  95. Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38, 529–536.CrossRefGoogle Scholar
  96. US.EPA. (2003). The DNAPL remediation challenge: Is there a case for source depletion? (p. 107). Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US.EPA.Google Scholar
  97. Van Genuchten, M. T. (1981). Non-equilibrium transport parameters from miscible displacement experiments. Riverside: U.S. Salinity Laboratory.Google Scholar
  98. Vecchia, E. D., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43, 8942–8947.CrossRefGoogle Scholar
  99. Veerapaneni, S., & Wiesner, M. R. (1996). Hydrodynamics of fractal aggregates with radially varying permeability. Journal of Colloid and Interface Science, 177, 45–57.CrossRefGoogle Scholar
  100. Vikesland, P. J., Rebodos, R. L., Bottero, J. Y., Rose, J., & Masion, A. (2016). Aggregation and sedimentation of magnetite nanoparticle clusters. Environmental Science: Nano, 3, 567–577.Google Scholar
  101. Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.CrossRefGoogle Scholar
  102. Wang, D., Paradelo, M., Bradford, S. A., Peijnenburg, W. J. G. M., Chu, L., & Zhou, D. (2011). Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Research, 45, 5905–5915.CrossRefGoogle Scholar
  103. Wang, D., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., & Zhou, D. (2012). Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environmental Science & Technology, 46, 2738–2745.CrossRefGoogle Scholar
  104. Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D. P., & Zhou, D. (2014). Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology, 164, 35–48.CrossRefGoogle Scholar
  105. Wei, Y.-T., Wu, S.-C., Yang, S.-W., Che, C.-H., Lien, H.-L., & Huang, D.-H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane. Journal of Hazardous Materials, 211, 373–380.CrossRefGoogle Scholar
  106. Yang, G. C. C., Tu, H.-C., & Hung, C.-H. (2007). Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology, 58, 166–172.CrossRefGoogle Scholar
  107. Yao, K.-M., Habibian, M. T., & O’Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 5, 1105–1112.CrossRefGoogle Scholar
  108. Zhu, X., Chen, H., Li, W., He, Y., Brookes, P. C., & Xu, J. (2014). Aggregation kinetics of natural soil nanoparticles in different electrolytes. European Journal of Soil Science, 65, 206–217.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tanapon Phenrat
    • 1
    • 2
  • Gregory V. Lowry
    • 3
    • 4
  • Peyman Babakhani
    • 5
    • 6
  1. 1.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  2. 2.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of EngineeringNaresuan UniversityPhitsanulokThailand
  3. 3.Center for Environmental Implications of Nanotechnology (CEINT)DurhamUSA
  4. 4.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.Center for Engineering Sustainability, School of EngineeringUniversity of LiverpoolMerseysideUK
  6. 6.Institute of Environmental EngineeringNational Chiao Tung UniversityHsinchu CityTaiwan

Personalised recommendations