Nanoscale Zerovalent Iron Particles for Treatment of Metalloids

  • Jan FilipEmail author
  • Jan Kolařík
  • Eleni Petala
  • Martin Petr
  • Ondřej Šráček
  • Radek Zbořil


In the past few decades, the remediation ability of nanoscale zerovalent iron (NZVI) particles has been exploited in both lab-scale and real-world scenarios. These studies and application examples brought about numerous breakthrough results. Therefore, NZVI has proved to be an excellent candidate for the efficient remediation of even challenging and complicated polluted aqueous systems. Herein, we emphasize the treatment of heavy metals (e.g., copper, cobalt, nickel, zinc, uranium, mercury, cadmium, lead, etc., and also hexavalent chromium) and metalloids (e.g., arsenic) as pollutants in water by NZVI. The mechanisms involved in the metal removal by NZVI are described and explained in terms of selectivity and reaction pathways. Analytical aspects, mainly represented by X-ray photoelectron spectroscopy as tool for deep understanding of the mechanism of metal removal, are mentioned, while an extensive report of examples of metal cations that can be removed by NZVI is overviewed. Specifically, the cases of chromium and arsenic removal are analyzed thoroughly, explaining the efficiency of various NZVI-based systems for immobilization and/or reduction of such toxic species. Finally, success stories of pilot and full-scale tests where NZVI was employed for metal removal are presented, describing the conditions, the effects, and the advantages of NZVI in large-scale applications.


Nanoscale Zerovalent Iron Metals Metalloids Sequestration Arsenic Chromium Pilot scale 



This work was supported by grants from the Technology Agency of the Czech Republic “Competence Centers” (project No. TE01020218), Ministry of the Interior of the Czech Republic (project No. VI20162019017), and the Ministry of Education, Youth and Sports of the Czech Republic (project No. LO1305). This work was further supported by Student Project IGA_PrF_2018_015 of Palacký University, Olomouc.


  1. Agency U.S.E.P. (2001). Drinking water arsenic rule history.Google Scholar
  2. Agency U.S.E.P. (2015). Chromium in drinking water.Google Scholar
  3. Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Khan, A. A., & Sracek, O. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.CrossRefGoogle Scholar
  4. Alessi, D. S., & Li, Z. (2001). Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environmental Science & Technology, 35, 3713–3717.CrossRefGoogle Scholar
  5. Almeelbi, T., & Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 14, 900.CrossRefGoogle Scholar
  6. Arshadi, M., Soleymanzadeh, M., Salvacion, J. W. L., & SalimiVahid, F. (2014). Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 426, 241–251.CrossRefGoogle Scholar
  7. Baikousi, M., Bourlinos, A. B., Douvalis, A., Bakas, T., Anagnostopoulos, D. F., Tuček, J., Šafářová, K., Zboril, R., & Karakassides, M. A. (2012). Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions. Langmuir, 28, 3918–3930.CrossRefGoogle Scholar
  8. Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A. B., Filip, J., Zbořil, R., Deligiannakis, Y., & Karakassides, M. A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636–647.CrossRefGoogle Scholar
  9. Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39, 763–770.CrossRefGoogle Scholar
  10. Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., Martin, R. A., Storniolo, A. D. R., & Thir, J. M. (2006). Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.CrossRefGoogle Scholar
  11. Bhaumik, M., Choi, H. J., McCrindle, R. I., & Maity, A. (2014). Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications. Journal of Colloid and Interface Science, 425, 75–82.CrossRefGoogle Scholar
  12. Biesinger, M. C., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2010). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257, 887–898.CrossRefGoogle Scholar
  13. Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717–2730.CrossRefGoogle Scholar
  14. Birkle, P., Bundschuh, J., & Sracek, O. (2010). Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Research, 44, 5605–5617.CrossRefGoogle Scholar
  15. Biterna, M., Arditsoglou, A., Tsikouras, E., & Voutsa, D. (2007). Arsenate removal by zero valent iron: Batch and column tests. Journal of Hazardous Materials, 149, 548–552.CrossRefGoogle Scholar
  16. Briggs, D. (1998). Surface analysis of polymers by XPS and static SIMS. Cambridge University Press.Google Scholar
  17. Bruzzoniti, M. C., & Fiore, S. (2014). Removal of inorganic contaminants from aqueous solutions: Evaluation of the remediation efficiency and of the environmental impact of a zero-valent Iron substrate. Water, Air, & Soil Pollution, 225, 2098.CrossRefGoogle Scholar
  18. Chen, L.-H., Huang, C.-C., & Lien, H.-L. (2008). Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere, 73, 692–697.CrossRefGoogle Scholar
  19. Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188, 1–5.CrossRefGoogle Scholar
  20. Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.CrossRefGoogle Scholar
  21. Dai, Y., Hu, Y., Jiang, B., Zou, J., Tian, G., & Fu, H. (2016). Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. Journal of Hazardous Materials, 309, 249–258.CrossRefGoogle Scholar
  22. Dickinson, M., & Scott, T. B. (2010). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Hazardous Materials, 178, 171–179.CrossRefGoogle Scholar
  23. Dong, H., He, Q., Zeng, G., Tang, L., Zhang, C., Xie, Y., Zeng, Y., Zhao, F., & Wu, Y. (2016). Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry. Journal of Colloid and Interface Science, 471, 7–13.CrossRefGoogle Scholar
  24. Dorjee, P., Amarasiriwardena, D., & Xing, B. (2015). Erratum to “Antimony adsorption by zero-valent iron nanoparticles (NZVI): Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study” [Microchem. J. 116 (2014) 15–23]. Microchemical Journal, 118, 278.CrossRefGoogle Scholar
  25. Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: A review. Environment International, 35, 1243–1255.CrossRefGoogle Scholar
  26. Dries, J., Bastiaens, L., Springael, D., Agathos, S. N., & Diels, L. (2005). Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environmental Science & Technology, 39, 8460–8465.CrossRefGoogle Scholar
  27. Eglal, M. M., & Ramamurthy, A. S. (2014). Nanofer ZVI: Morphology, particle characteristics, kinetics, and applications. Journal of Nanomaterials, 2014, 11.CrossRefGoogle Scholar
  28. Farrell, J., Wang, J., O’Day, P., & Conklin, M. (2001). Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environmental Science & Technology, 35, 2026–2032.CrossRefGoogle Scholar
  29. Fiedor, J. N., Bostick, W. D., Jarabek, R. J., & Farrell, J. (1998). Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environmental Science & Technology, 32, 1466–1473.CrossRefGoogle Scholar
  30. Filella, M., Belzile, N., & Chen, Y.-W. (2002). Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth-Science Reviews, 57, 125–176.CrossRefGoogle Scholar
  31. Filip, J., Karlický, F., Marušák, Z., Lazar, P., Černík, M., Otyepka, M., & Zbořil, R. (2014). Anaerobic reaction of nanoscale zerovalent Iron with water: Mechanism and kinetics. The Journal of Physical Chemistry C, 118, 13817–13825.CrossRefGoogle Scholar
  32. Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205.CrossRefGoogle Scholar
  33. Gheju, M. (2011). Hexavalent chromium reduction with Zero-Valent Iron (ZVI) in aquatic systems. Water, Air, & Soil Pollution, 222, 103–148.CrossRefGoogle Scholar
  34. Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.CrossRefGoogle Scholar
  35. Gottinger, A. M., Wild, D. J., McMartin, D., Moldovan, B., & Wang, D. (2010). Development of an Iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water. In C. A. Brebbia & A. M. Marinov (Eds.), Water pollution X (pp. 333–344). WIT.Google Scholar
  36. Gräfe, M., Beattie, D. A., Smith, E., Skinner, W. M., & Singh, B. (2008). Copper and arsenate co-sorption at the mineral–water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322, 399–413.CrossRefGoogle Scholar
  37. Gu, Z., Deng, B., & Yang, J. (2007). Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption. Microporous and Mesoporous Materials, 102, 265–273.CrossRefGoogle Scholar
  38. Guo, X., Yang, Z., Dong, H., Guan, X., Ren, Q., Lv, X., & Jin, X. (2016). Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Research, 88, 671–680.CrossRefGoogle Scholar
  39. Gupta, A., Yunus, M., & Sankararamakrishnan, N. (2012). Zerovalent iron encapsulated chitosan nanospheres – A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere, 86, 150–155.CrossRefGoogle Scholar
  40. Han, W., Fu, F., Cheng, Z., Tang, B., & Wu, S. (2016). Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. Journal of Hazardous Materials, 302, 437–446.CrossRefGoogle Scholar
  41. Huang, Y. H., Tang, C., & Zeng, H. (2012). Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(II) treatment system. Chemical Engineering Journal, 200–202, 257–263.CrossRefGoogle Scholar
  42. Huang, D.-L., Chen, G.-M., Zeng, G.-M., Xu, P., Yan, M., Lai, C., Zhang, C., Li, N.-J., Cheng, M., He, X.-X., & He, Y. (2015). Synthesis and application of modified zero-valent iron nanoparticles for removal of hexavalent chromium from wastewater. Water, Air, & Soil Pollution, 226, 375.CrossRefGoogle Scholar
  43. Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37, 2734–2742.CrossRefGoogle Scholar
  44. Jabeen, H., Chandra, V., Jung, S., Lee, J. W., Kim, K. S., & Kim, S. B. (2011). Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 3, 3583–3585.CrossRefGoogle Scholar
  45. Jiang, X., Qiao, J., Lo, I. M. C., Wang, L., Guan, X., Lu, Z., Zhou, G., & Xu, C. (2015). Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron. Journal of Hazardous Materials, 283, 880–887.CrossRefGoogle Scholar
  46. Kakavandi, B., Kalantary, R. R., Farzadkia, M., Mahvi, A. H., Esrafili, A., Azari, A., Yari, A. R., & Javid, A. B. (2014). Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. Journal of Environmental Health Science and Engineering, 12, 115.CrossRefGoogle Scholar
  47. Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39, 1291–1298.CrossRefGoogle Scholar
  48. Kanel, S. R., Grenèche, J.-M., & Choi, H. (2006). Arsenic(V) removal from groundwater using nano scale zero-valent Iron as a colloidal reactive barrier material. Environmental Science & Technology, 40, 2045–2050.CrossRefGoogle Scholar
  49. Karabelli, D., Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Scott, T. B., Hallam, K. R., & Lieberwirth, I. (2008). Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: A study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research, 47, 4758–4764.CrossRefGoogle Scholar
  50. Kareus, S. A., Kelley, C., Walton, H. S., & Sinclair, P. R. (2001). Release of Cr(III) from Cr(III) picolinate upon metabolic activation. Journal of Hazardous Materials, 84, 163–174.CrossRefGoogle Scholar
  51. Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and as(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42, 7424–7430.CrossRefGoogle Scholar
  52. Keenan, C. R., & Sedlak, D. L. (2008). Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environmental Science & Technology, 42, 1262–1267.CrossRefGoogle Scholar
  53. Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., & Zboril, R. (2011). Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere, 82, 1178–1184.CrossRefGoogle Scholar
  54. Kocourková-Víšková, E., Loun, J., Sracek, O., Houzar, S., & Filip, J. (2015). Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at Kaňk near Kutná Hora, Czech Republic. Mineralogy and Petrology, 109, 17–33.CrossRefGoogle Scholar
  55. Kumarathilaka, P., Jayaweera, V., Wijesekara, H., Kottegoda, I. R. M., Rosa, S. R. D., & Vithanage, M. (2016). Insights into starch coated nanozero valent iron-graphene composite for Cr(VI) removal from aqueous medium. Journal of Nanomaterials, 2016, 10.CrossRefGoogle Scholar
  56. Li, X.-q., & Zhang, W.-x. (2007). Sequestration of metal cations with Zerovalent Iron Nanoparticles A study with high resolution X-ray Photoelectron Spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111, 6939–6946.CrossRefGoogle Scholar
  57. Li, X.-q., Elliott, D. W., & Zhang, W.-x. (2006). Zero-valent Iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.CrossRefGoogle Scholar
  58. Li, X.-q., Cao, J., & Zhang, W.-x. (2008). Stoichiometry of Cr(VI) immobilization using nanoscale Zerovalent Iron (NZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial Engineering Chemistry Research, 47, 2131–2139.CrossRefGoogle Scholar
  59. Li, J., Bao, H., Xiong, X., Sun, Y., & Guan, X. (2015a). Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field. Separation and Purification Technology, 151, 276–283.CrossRefGoogle Scholar
  60. Li, Z.-J., Wang, L., Yuan, L.-Y., Xiao, C.-L., Mei, L., Zheng, L.-R., Zhang, J., Yang, J.-H., Zhao, Y.-L., Zhu, Z.-T., Chai, Z.-F., & Shi, W.-Q. (2015b). Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 290, 26–33.CrossRefGoogle Scholar
  61. Li, C., Huang, B., Li, C., Chen, X., & Huang, Y. (2016a). In situ formation of nanoscale zero-value iron on fish-scale-based porous carbon for Cr(VI) adsorption. Water Science and Technology, 73, 2237–2243.CrossRefGoogle Scholar
  62. Li, L., Hu, J., Shi, X., Fan, M., Luo, J., & Wei, X. (2016b). Nanoscale zero-valent metals: A review of synthesis, characterization, and applications to environmental remediation. Environmental Science and Pollution Research, 23, 17880–17900.CrossRefGoogle Scholar
  63. Li, S., Wang, W., Liang, F., & Zhang, W.-x. (2017). Heavy metal removal using nanoscale zero-valent iron (NZVI): Theory and application. Journal of Hazardous Materials, 322(Part A), 163–171.CrossRefGoogle Scholar
  64. Liang, L., Yang, W., Guan, X., Li, J., Xu, Z., Wu, J., Huang, Y., & Zhang, X. (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47, 5846–5855.CrossRefGoogle Scholar
  65. Liang, L., Sun, W., Guan, X., Huang, Y., Choi, W., Bao, H., Li, L., & Jiang, Z. (2014). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49, 371–380.CrossRefGoogle Scholar
  66. Liang, Z., Wen, Q., Wang, X., Zhang, F., & Yu, Y. (2016). Chemically stable and reusable nano zero-valent iron/graphite-like carbon nitride nanohybrid for efficient photocatalytic treatment of Cr(VI) and rhodamine B under visible light. Applied Surface Science, 386, 451–459.CrossRefGoogle Scholar
  67. Ling, L., & Zhang, W.-X. (2014). Sequestration of arsenate in zero-valent iron nanoparticles: Visualization of Intraparticle reactions at angstrom resolution. Environmental Science & Technology Letters, 1, 305–309.CrossRefGoogle Scholar
  68. Liu, T., Wang, Z.-L., Yan, X., & Zhang, B. (2014a). Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chemical Engineering Journal, 245, 34–40.CrossRefGoogle Scholar
  69. Liu, W.-J., Qian, T.-T., & Jiang, H. (2014b). Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 236, 448–463.CrossRefGoogle Scholar
  70. Liu, T., Wang, Z.-L., & Sun, Y. (2015). Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 263, 55–61.CrossRefGoogle Scholar
  71. López, D. L., Bundschuh, J., Birkle, P., Armienta, M. A., Cumbal, L., Sracek, O., Cornejo, L., & Ormachea, M. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 429, 57–75.CrossRefGoogle Scholar
  72. Ludwig, R. D., Smyth, D. J. A., Blowes, D. W., Spink, L. E., Wilkin, R. T., Jewett, D. G., & Weisener, C. J. (2009). Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB. Environmental Science & Technology, 43, 1970–1976.CrossRefGoogle Scholar
  73. Lv, X., Xu, J., Jiang, G., Tang, J., & Xu, X. (2012). Highly active nanoscale zero-valent iron (NZVI)–Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. Journal of Colloid and Interface Science, 369, 460–469.CrossRefGoogle Scholar
  74. Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2011). Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination, 281, 93–99.CrossRefGoogle Scholar
  75. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.CrossRefGoogle Scholar
  76. Marshall, G., Ferreccio, C., Yuan, Y., Bates, M. N., Steinmaus, C., Selvin, S., Liaw, J., & Smith, A. H. (2007). Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. JNCI: Journal of the National Cancer Institute, 99, 920–928.CrossRefGoogle Scholar
  77. Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142, 1–53.CrossRefGoogle Scholar
  78. Moraci, N., & Calabrò, P. S. (2010). Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. Journal of Environmental Management, 91, 2336–2341.CrossRefGoogle Scholar
  79. Moulder, J. F., & Chastain, J. (1992). Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation.Google Scholar
  80. Muthukrishnan, M., & Guha, B. K. (2008). Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination, 219, 171–178.CrossRefGoogle Scholar
  81. Němeček, J., Lhotský, O., & Cajthaml, T. (2014). Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Science of the Total Environment, 485–486, 739–747.CrossRefGoogle Scholar
  82. Němeček, J., Pokorný, P., Lacinová, L., Černík, M., Masopustová, Z., Lhotský, O., Filipová, A., & Cajthaml, T. (2015). Combined abiotic and biotic in situ reduction of hexavalent chromium in groundwater using NZVI and whey: A remedial pilot test. Journal of Hazardous Materials, 300, 670–679.CrossRefGoogle Scholar
  83. Němeček, J., Pokorný, P., Lhotský, O., Knytl, V., Najmanová, P., Steinová, J., Černík, M., Filipová, A., Filip, J., & Cajthaml, T. (2016). Combined nano-biotechnology for in situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Science of the Total Environment, 563–564, 822–834.CrossRefGoogle Scholar
  84. Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environmental Science & Technology, 47, 4544–4554.CrossRefGoogle Scholar
  85. Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in ground water. Science, 296, 2143–2145.CrossRefGoogle Scholar
  86. Nordstrom, D. K., & Alpers, C. N. (1999). Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proceedings of the National Academy of Sciences, 96, 3455–3462.CrossRefGoogle Scholar
  87. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.CrossRefGoogle Scholar
  88. Organization W.H. (2011). Guidelines for drinking-water quality (4th ed.).Google Scholar
  89. Pang, S.-Y., Jiang, J., & Ma, J. (2011). Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against Ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45, 307–312.CrossRefGoogle Scholar
  90. Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zbořil, R., & Karakassides, M. A. (2013). Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 261, 295–306.CrossRefGoogle Scholar
  91. Petala, E., Baikousi, M., Karakassides, M. A., Zoppellaro, G., Filip, J., Tucek, J., Vasilopoulos, K. C., Pechousek, J., & Zboril, R. (2016). Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water. Physical Chemistry Chemical Physics, 18, 10637–10646.CrossRefGoogle Scholar
  92. Planer-Friedrich, B., Lehr, C., Matschullat, J., Merkel, B. J., Nordstrom, D. K., & Sandstrom, M. W. (2006). Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochimica et Cosmochimica Acta, 70, 2480–2491.CrossRefGoogle Scholar
  93. Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M., & Klinck, B. A. (2005). Environmental geochemistry. Elsevier, 9, 17–66.Google Scholar
  94. Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34, 2564–2569.CrossRefGoogle Scholar
  95. Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13, 479–486.CrossRefGoogle Scholar
  96. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39, 1309–1318.CrossRefGoogle Scholar
  97. Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: A global synthesis. Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  98. Ravikumar, K. V. G., Kumar, D., Kumar, G., Mrudula, P., Natarajan, C., & Mukherjee, A. (2016). Enhanced Cr(VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Industrial & Engineering Chemistry Research, 55, 5973–5982.CrossRefGoogle Scholar
  99. Riba, O., Scott, T. B., Vala Ragnarsdottir, K., & Allen, G. C. (2008). Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochimica et Cosmochimica Acta, 72, 4047–4057.CrossRefGoogle Scholar
  100. Richard, F. C., & Bourg, A. C. M. (1991). Aqueous geochemistry of chromium: A review. Water Research, 25, 807–816.CrossRefGoogle Scholar
  101. Rodová, A., Filip, J., & Černík, M. (2015). Arsenic immobilization by nanoscale zero-valent iron/Immobilizacja Arsenu Przez Nanożelazo Na Zerowym Stopniu Utlenienia. Ecological Chemistry and Engineering S, 22(1), 45–59.CrossRefGoogle Scholar
  102. Salzsauler, K. A., Sidenko, N. V., & Sherriff, B. L. (2005). Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314.CrossRefGoogle Scholar
  103. Sasaki, K., Nakano, H., Wilopo, W., Miura, Y., & Hirajima, T. (2009). Sorption and speciation of arsenic by zero-valent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 8–17.CrossRefGoogle Scholar
  104. Schreiber, M. E., Simo, J. A., & Freiberg, P. G. (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeology Journal, 8, 161–176.CrossRefGoogle Scholar
  105. Sharma, A. K., Kumar, R., Mittal, S., Hussain, S., Arora, M., Sharma, R. C., & Babu, J. N. (2015). In situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr(vi) adsorption. RSC Advances, 5, 89441–89446.CrossRefGoogle Scholar
  106. Shi, L.-N., Lin, Y.-M., Zhang, X., & Chen, Z.-l. (2011). Synthesis, characterization and kinetics of bentonite supported NZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 171, 612–617.CrossRefGoogle Scholar
  107. Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V., & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism. Water Research, 99, 56–65.CrossRefGoogle Scholar
  108. Slovák, P., Malina, O., Kašlík, J., Tomanec, O., Tuček, J., Petr, M., Filip, J., Zoppellaro, G., & Zbořil, R. (2016). Zero-valent iron nanoparticles with unique spherical 3D architectures encode superior efficiency in copper entrapment. ACS Sustainable Chemistry & Engineering, 4, 2748–2753.CrossRefGoogle Scholar
  109. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  110. Statham, T. M., Mason, L. R., Mumford, K. A., & Stevens, G. W. (2015a). The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling. Water Research, 77, 24–34.CrossRefGoogle Scholar
  111. Statham, T. M., Mumford, K. A., Rayner, J. L., & Stevens, G. W. (2015b). Removal of copper and zinc from ground water by granular zero-valent iron: A dynamic freeze–thaw permeable reactive barrier laboratory experiment. Cold Regions Science and Technology, 110, 120–128.CrossRefGoogle Scholar
  112. Stearns, D. M., Silveira, S. M., Wolf, K. K., & Luke, A. M. (2002). Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 513, 135–142.CrossRefGoogle Scholar
  113. Su, C., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35, 1487–1492.CrossRefGoogle Scholar
  114. Tanboonchuy, V., Hsu, J. C., Grisdanurak, N., & Liao, C. H. (2011). Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. Journal of Hazardous Matererials, 186, 2123–2128.CrossRefGoogle Scholar
  115. Tang, C., Huang, Y. H., Zeng, H., & Zhang, Z. (2014a). Promotion effect of Mn2+ and Co2+ on selenate reduction by zero-valent iron. Chemical Engineering Journal, 244, 97–104.CrossRefGoogle Scholar
  116. Tang, C., Huang, Y. H., Zeng, H., & Zhang, Z. (2014b). Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms. Water Research, 67, 166–174.CrossRefGoogle Scholar
  117. Teng, H., Xu, S., Zhao, C., Lv, F., & Liu, H. (2013). Removal of hexavalent chromium from aqueous solutions by sodium dodecyl sulfate stabilized nano zero-valent iron: a kinetics, equilibrium, thermodynamics study. Seperation Science and Technology, 48, 1729–1737.CrossRefGoogle Scholar
  118. Thekkae Padil, V. V., Filip, J., Suresh, K. I., Waclawek, S., & Cernik, M. (2016). Electrospun membrane composed of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Advances, 6, 110288–110300.CrossRefGoogle Scholar
  119. Thinh, N. N., Hanh, P. T. B., Ha, L. T. T., Anh, L. N., Hoang, T. V., Hoang, V. D., Dang, L. H., Khoi, N. V., & Lam, T. D. (2013). Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Materials Science and Engineering: C, 33, 1214–1218.CrossRefGoogle Scholar
  120. Tiberg, C., Kumpiene, J., Gustafsson, J. P., Marsz, A., Persson, I., Mench, M., & Kleja, D. B. (2016). Immobilization of Cu and As in two contaminated soils with zero-valent iron – Long-term performance and mechanisms. Applied Geochemistry, 67, 144–152.CrossRefGoogle Scholar
  121. Triszcz, J. M., Porta, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150, 431–439.CrossRefGoogle Scholar
  122. Tuček, J., Prucek, R., Kolařík, J., Zoppellaro, G., Petr, M., Filip, J., Sharma, V. K., & Zbořil, R. (2017). Zero-valent iron nanoparticles reduce arsenites and arsenates to As(0) firmly embedded in Core–Shell superstructure: Challenging strategy of arsenic treatment under anoxic conditions. ACS Sustainable Chemistry & Engineering, 5, 3027–3038.CrossRefGoogle Scholar
  123. Tyrovola, K., Peroulaki, E., & Nikolaidis, N. P. (2007). Modeling of arsenic immobilization by zero valent iron. European Journal of Soil Biology, 43, 356–367.CrossRefGoogle Scholar
  124. Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., & Chen, S. (2014). Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 268, 124–131.CrossRefGoogle Scholar
  125. Wang, X., Cong, S., Wang, P., Ma, J., Liu, H., & Ning, P. (2017). Novel green micelles Pluronic F-127 coating performance on nano zero-valent iron: Enhanced reactivity and innovative kinetics. Separation and Purification Technology, 174, 174–182.CrossRefGoogle Scholar
  126. Watts, J. F., & Wolstenholme, J. (2003). An introduction to surface analysis by XPS and AES. Wiley.Google Scholar
  127. Wen, Z., Zhang, Y., & Dai, C. (2014). Removal of phosphate from aqueous solution using nanoscale zerovalent iron (NZVI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 433–440.CrossRefGoogle Scholar
  128. Weng, C.-H., Lin, Y.-T., Lin, T. Y., & Kao, C. M. (2007). Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Journal of Hazardous Materials, 149, 292–302.CrossRefGoogle Scholar
  129. Wu, P., Li, S., Ju, L., Zhu, N., Wu, J., Li, P., & Dang, Z. (2012). Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles. Journal of Hazardous Materials, 219(220), 283–288.CrossRefGoogle Scholar
  130. Wu, L., Liao, L., Lv, G., & Qin, F. (2015). Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Journal of Contaminant Hydrology, 179, 1–9.CrossRefGoogle Scholar
  131. Xi, Y., Mallavarapu, M., & Naidu, R. (2010). Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—A SEM, TEM and XPS study. Materials Research Bulletin, 45, 1361–1367.CrossRefGoogle Scholar
  132. Xiao, S., Ma, H., Shen, M., Wang, S., Huang, Q., & Shi, X. (2011). Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 381, 48–54.CrossRefGoogle Scholar
  133. Yan, W., Ramos, M. A. V., Koel, B. E., & Zhang, W.-X. (2012a). As(III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron spectroscopy. The Journal of Physical Chemistry C, 116, 5303–5311.CrossRefGoogle Scholar
  134. Yan, W., Vasic, R., Frenkel, A. I., & Koel, B. E. (2012b). Intraparticle reduction of Arsenite (As(III)) by nanoscale Zerovalent Iron (NZVI) investigated with in situ X-ray absorption spectroscopy. Environmental Science & Technology, 46, 7018–7026.CrossRefGoogle Scholar
  135. Yuan, Y., Marshall, G., Ferreccio, C., Steinmaus, C., Selvin, S., Liaw, J., Bates, M. N., & Smith, A. H. (2007). Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. American Journal of Epidemiology, 166, 1381–1391.CrossRefGoogle Scholar
  136. Zboril, R., Andrle, M., Oplustil, F., Machala, L., Tucek, J., Filip, J., Marusak, Z., & Sharma, V. K. (2012). Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. Journal of Hazardous Materials, 211–212, 126–130.CrossRefGoogle Scholar
  137. Zhang, P., Tao, X., Li, Z., & Bowman, R. S. (2002). Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets. Environmental Science & Technology, 36, 3597–3603.CrossRefGoogle Scholar
  138. Zhang, Y., Amrhein, C., & Frankenberger, W. T., Jr. (2005). Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron. Science of the Total Environment, 350, 1–11.CrossRefGoogle Scholar
  139. Zhang, Y.-Y., Jiang, H., Zhang, Y., & Xie, J.-F. (2013). The dispersity-dependent interaction between montmorillonite supported NZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412–419.CrossRefGoogle Scholar
  140. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.CrossRefGoogle Scholar
  141. Zhou, J., Ren, F., Wu, W., Zhang, S., Xiao, X., Xu, J., & Jiang, C. (2012). Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites. Journal of Colloid and Interface Science, 387, 47–55.CrossRefGoogle Scholar
  142. Zhou, Q., Li, J., Wang, M., & Zhao, D. (2016). Iron-based magnetic nanomaterials and their environmental applications. Critical Reviews in Environmental Science and Technology, 46, 783–826.CrossRefGoogle Scholar
  143. Zhu, H., Jia, Y., Wu, X., & Wang, H. (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172, 1591–1596.CrossRefGoogle Scholar
  144. Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environmental Science & Technology, 50, 7290–7304.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jan Filip
    • 1
    Email author
  • Jan Kolařík
    • 1
  • Eleni Petala
    • 1
  • Martin Petr
    • 1
  • Ondřej Šráček
    • 1
  • Radek Zbořil
    • 1
  1. 1.Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry, Experimental Physics and Geology, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations