Chemical Reduction and Oxidation of Organic Contaminants by Nanoscale Zerovalent Iron

  • Tanapon Phenrat
  • Thi Song Thao Le
  • Bhanuphong Naknakorn
  • Gregory V. Lowry


This chapter critically reviews the kinetics of NZVI used to reductively and oxidatively transform various kinds of priority organic contaminants including chlorinated ethenes, chlorinated ethanes, chlorinated and aromatic nitro hydrocarbons, chlorinated biphenyls, halogenated bisphenol A, explosives, dyes, and pesticides. All kinds of NZVI, including bare, bimetallic, polymer-modified, and supported NZVI, are reviewed. A total of 102 datasets of laboratory-scale experiments over 20 years (1997–2017) of NZVI research are evaluated to extract state-of-the-art understanding. This chapter elaborates not only reductive transformation pathways of priority organic contaminants but also two factors governing NZVI reactivity: intrinsic properties of the materials and environmental conditions where NZVI particles are applied. These include the particle crystallinity and chemical composition (noble metal), the effect of polymeric surface modification, and the effects of sorptive support, aging effects, pH, anionic and cationic solutes, natural organic matter, aquifer material, contaminant concentration, and the presence of dense nonaqueous phase liquid. Similarly, various factors affecting oxidative degradation of contaminants of concern using NZVI-induced Fenton’s reaction are reviewed.


Nanoscale zerovalent iron Reductive dechlorination Fenton reaction Chlorinated organics Degradation kinetics Degradation mechanisms 


  1. Al-Shamsi, M. A., & Thomson, N. R. (2013). Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Industrial & Engineering Chemistry Research, 52, 13564–13571.CrossRefGoogle Scholar
  2. Amir, A., & Lee, W. (2011). Enhanced reductive dechlorination of tetrachloroethene by nano-sized zerovalent iron with vitamin B12. Chemical Engineering Journal, 170, 492–497.CrossRefGoogle Scholar
  3. Arnold, W. A., & Roberts, A. L. (2000). Pathway and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology, 34, 1794–1805.CrossRefGoogle Scholar
  4. Ay, F., & Kargi, F. (2010). Advanced oxidation of amoxicillin by Fenton's reagent treatment. Journal of Hazardous Materials, 179, 622–627.CrossRefGoogle Scholar
  5. Babuponnusami, A., & Muthukumar, K. (2012). Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separation and Purification Technology, 98, 130–135.CrossRefGoogle Scholar
  6. Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2, 557–572.CrossRefGoogle Scholar
  7. Baer, D. R., Tratnyek, P. G., Qiang, Y., Amonette, J. E., Linehan, J., Sarathy, V., Nurmi, J. T., Wang, C.-M., & Antony, J. (2007). Synthesis, characterization, and properties of zero-valent iron nanoparticles. In G. E. Fryxell & G. Cao (Eds.), Environmental applications of nanomaterials. London: Imperial College Press.Google Scholar
  8. Berge, N. D., & Ramsburg, C. A. (2010). Iron-mediated trichloroethene reduction within nonaqueous phase liquid. Journal of Contaminant Hydrology, 118, 105–116.CrossRefGoogle Scholar
  9. Bremner, D. H., Carlo, S. D., Chakinala, A. G., & Cravotto, G. (2008). Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process. Ultrasonics Sonochemistry, 15, 416–419.CrossRefGoogle Scholar
  10. Cao, J., Xu, R., Tang, H., Tang, S., & Cao, M. (2011). Synthesis of monodispersed CMC-stabilized Fe–Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. The Science of the Total Environment, 409, 2336–2341.CrossRefGoogle Scholar
  11. Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. (2011a). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001.CrossRefGoogle Scholar
  12. Chen, Z.-X., Jin, X.-Y., Chen, Z., Megharaj, M., & Naidu, R. (2011b). Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 363, 601–607.CrossRefGoogle Scholar
  13. Cheng, R., Cheng, C., Liu, G. H., Zheng, X., Li, G., & Li, J. (2015). Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system. Chemosphere, 141, 138–143.CrossRefGoogle Scholar
  14. Cho, H.-H., & Park, J. W. (2006). Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules. Chemosphere, 64, 1047–1052.CrossRefGoogle Scholar
  15. Choi, K., & Lee, W. (2012). Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). Journal of Hazardous Materials, 211-212, 146–153.CrossRefGoogle Scholar
  16. Choi, H., Al-Abed, S. R., Agarwal, S., & Dionysiou, D. (2008). Synthesis of reactive Nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 20, 3649–3655.CrossRefGoogle Scholar
  17. Chu, L., Wang, J., Dong, J., Liu, H., & Sun, X. (2012). Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere, 86, 409–414.CrossRefGoogle Scholar
  18. Cioslowski, J., Liu, G., & Moncrieff, D. (1997). Thermochemistry of homolytic C-C, C-H, and C-Cl bond dissociations in polychloroethanes: benchmark electronic structure calculations. Journal of the American Chemical Society, 119, 11452–114757.CrossRefGoogle Scholar
  19. Cupples, A. M., Spormann, A. M., & McCarty, P. L. (2004). Comparative evaluation of chloroethene dechlorination to ethene by dehalococcoides-like microorganisms environ. Science and Technology, 38, 4768–4774.CrossRefGoogle Scholar
  20. Deng, B., & Hu, S. (2007). Reductive dechlorination of chlorinated solvents on zerovalent iron surfaces. In J. A. Smith & S. E. Burns (Eds.), Physicochemical Groundwater Remediation (pp. 139–160). New York: Springer Science & Business Media.Google Scholar
  21. Diao, Z. H., Xu, X. R., Chen, H., Jiang, D., Yang, Y. X., Kong, L. J., Sun, Y. X., Hu, Y. X., Hao, Q. W., & Liu, L. (2016). Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism. Journal of Hazardous Materials, 316, 186–193.CrossRefGoogle Scholar
  22. Diya’uddeen, B. H., Rahim Pouran, S., Abdul Aziz, A. R., Nashwan, S. M., Wan Daud, W. M. A., & Shaaban, M. G. (2015). Hybrid of Fenton and sequencing batch reactor for petroleum refinery wastewater treatment. Journal of Industrial and Engineering Chemistry, 25, 186–191.CrossRefGoogle Scholar
  23. Dong, H., Zhao, F., Zeng, G., Tang, L., Fan, C., Zhang, L., Zeng, Y., He, Q., Xie, Y., & Wu, Y. (2016). Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution. Journal of Hazardous Materials, 312, 234–242.CrossRefGoogle Scholar
  24. Doong, R.-A., & Lai, Y.-L. (2006). Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere, 64, 371–378.CrossRefGoogle Scholar
  25. Dries, J., Bastiaens, L., Springael, D., Agathos, S. N., & Diels, L. (2005). Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems environ. Science and Technology, 39, 8460–8465.CrossRefGoogle Scholar
  26. Elliott, D. W., Lien, H.-L., & Zhang, W. X. (2009). Degradation of lindane by zero-valent iron nanoparticles. Journal of Environmental Engineering, 135, 317–324.CrossRefGoogle Scholar
  27. Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H. J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131, 9–28.CrossRefGoogle Scholar
  28. Fleer, G. J., Cohen Stuart, M. A., Scheutjens, J. M. H. M., Cosgrove, T., & Vincent, B. (1998). Polymers at interfaces. New York: Chapman & Hall.CrossRefGoogle Scholar
  29. Frost, R. L., Xi, Y., & He, H. (2010). Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. Journal of Colloid and Interface Science, 341, 153–161.CrossRefGoogle Scholar
  30. Garcia, A. N., Boparai, H. K., & O’Carroll, D. M. (2016). Enhanced Dechlorination of 1,2-Dichloroethane by coupled Nano Iron-dithionite treatment. Environmental Science & Technology, 50, 5243–5251.CrossRefGoogle Scholar
  31. Ghosh, C. K. (2015). Quantum effect on properties of nanomaterials. In A. Sengupta & C. K. Sarkar (Eds.), Introduction to nano: Basics to nanoscience and nanotechnology (pp. 73–111). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  32. Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater, 32, 958–967.CrossRefGoogle Scholar
  33. Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., & Chen, M. (2015). Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS One, 10, e0132067.CrossRefGoogle Scholar
  34. Harkness, M. R., Bracco, A. A., Brennan, M. J., Jr., DeWeerd, K. A., & Spivack, J. L. (1999). Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in dover soil columns environ. Science and Technology, 33, 1100–1109.CrossRefGoogle Scholar
  35. He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.CrossRefGoogle Scholar
  36. He, F., & Zhao, D. (2008). Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts, and reaction conditions. Applied Catalysis B: Environmental, 84, 533–540.CrossRefGoogle Scholar
  37. He, F., Zhao, D., Liu, J., & ROberts, C. B. (2007). Stabilization of Fe−Pd nanoparticles with sodium Carboxymethyl cellulose for enhanced transport and Dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46, 29–34.CrossRefGoogle Scholar
  38. Hepure Technology Inc. (2017). Technical specification sheet: Ferox flow ZVI reactive iron powder. Flemington: Hepure Technology.Google Scholar
  39. Huang, Q., Liu, W., Peng, P., & Huang, W. (2013). Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts. Chemosphere, 92, 1321–1327.CrossRefGoogle Scholar
  40. Hyung, H., Fortner, J. D., Hughes, J. B., & Kim, J. H. (2007). Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science & Technology, 41, 179–184.CrossRefGoogle Scholar
  41. Jia, H., & Wang, C. (2015). Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0intercalated in smectite: Pathway, reactivity, and selectivity. Journal of Hazardous Materials, 300, 779–787.CrossRefGoogle Scholar
  42. Jiang, Q., Liang, L. H., & Zhao, D. S. (2001). Lattice contraction and surface stress of fcc nanocrystals. The Journal of Physical Chemistry B, 105, 6275–6277.CrossRefGoogle Scholar
  43. Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30, 2634–2640.CrossRefGoogle Scholar
  44. Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39, 1291–1298.CrossRefGoogle Scholar
  45. Kim, H.-S., Kim, T., Ahn, J.-Y., Hwang, K.-Y., Park, J.-Y., Lim, T.-T., & Hwang, I. (2012). Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and FeH2) in nitrate reduction. Chemical Engineering Journal, 197, 16–23.CrossRefGoogle Scholar
  46. Kim, H. J., Leitch, M., Naknakorn, B., Tilton, R. D., & Lowry, G. V. (2017). Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. Journal of Hazardous Materials, 322, 136–144.CrossRefGoogle Scholar
  47. Li, X.-Q., & Zhang, W.-X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray photoelectron spectroscopy (HR-XPS) J. Physical Chemistry C, 111, 6939–6946.CrossRefGoogle Scholar
  48. Li, B., & Zhu, J. (2014). Removal of p-chloronitrobenzene from groundwater: Effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process. Chemical Engineering Journal, 255, 225–232.CrossRefGoogle Scholar
  49. Li, R., Gao, Y., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2015). Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst. Journal of Colloid and Interface Science, 438, 87–93.CrossRefGoogle Scholar
  50. Li, Y., Li, X., Xiao, Y., Wei, C., Han, D., & Huang, W. (2016). Catalytic debromination of tetrabromobisphenol A by Ni/nZVI bimetallic particles. Chemical Engineering Journal, 284, 1242–1250.CrossRefGoogle Scholar
  51. Li, Y., Li, X., Han, D., Huang, W., & Yang, C. (2017). New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo- and tetrachlorobisphenol A. Chemical Engineering Journal, 311, 173–182.CrossRefGoogle Scholar
  52. Lien, H.-L., & Zhang, W. X. (1999). Transformation of chlorinated methanes by nanoscale Iron particles. Journal of Environmental Engineering, 125, 1042–1047.CrossRefGoogle Scholar
  53. Lien, H.-L., & Zhang, W. X. (2001). Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A, 191, 97–105.CrossRefGoogle Scholar
  54. Lien, H.-L., & Zhang, W. X. (2005). Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. Journal of Environmental Engineering, 131, 4–10.CrossRefGoogle Scholar
  55. Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40, 6085–6090.CrossRefGoogle Scholar
  56. Liu, Y., Choi, H., Dionysiou, D., & Lowry, G. V. (2005a). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17, 5315–5322.CrossRefGoogle Scholar
  57. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005b). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39, 1338–1345.CrossRefGoogle Scholar
  58. Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41, 7881–7887.CrossRefGoogle Scholar
  59. Liu, A., Liu, J., & Zhang, W. X. (2015). Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 119, 1068–1074.CrossRefGoogle Scholar
  60. Le, T. S. T., & Phenrat, T. (2018). Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton System by Using Sequential H2O2 Addition at Natural pH. Water Research, (Under Review).Google Scholar
  61. Mackenzie, K., Bleyl, S., Georgi, A., & Kopinke, F.-D. (2012). Carbo-Iron – An Fe/AC composite – As alternative to nano-iron for groundwater treatment. Wat. Res., 46, 3817–3826.CrossRefGoogle Scholar
  62. Maes, A., Reamdinck, H. V., Smith, K., Ossieur, W., Lebbe, L., & Verstraete, W. (2006). Transport and activity of desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater. Environmental Science and Technology, 40, 5544–5552.CrossRefGoogle Scholar
  63. Martins, R. C., Rossi, A. F., & Quinta-Ferreira, R. M. (2010). Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. Journal of Hazardous Materials, 180, 716–721.CrossRefGoogle Scholar
  64. Masten, S. J., & Butler, J. N. (1986). Ultraviolet-enhanced ozonation of organic compounds: 1,2-Dichloroethane and trichloroethylene as model substrates. Ozone: Science & Engineering, 8, 339–353.CrossRefGoogle Scholar
  65. Mccormick, M. L., & Adriaens, P. (2004). Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environmental Science & Technology, 38, 1045–1053.CrossRefGoogle Scholar
  66. Moon, B.-H., Park, Y.-B., & Park, K.-H. (2011). Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination, 268, 249–252.CrossRefGoogle Scholar
  67. Munoz, M., Pliego, G., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2014). Application of intensified Fenton oxidation to the treatment of sawmill wastewater. Chemosphere, 109, 34–41.CrossRefGoogle Scholar
  68. Naja, G., Halasz, A., Thiboutot, S., Ampleman, G., & Hawari, J. (2008). Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. Environmental Science & Technology, 42, 4364–4370.CrossRefGoogle Scholar
  69. Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39, 1221–1230.CrossRefGoogle Scholar
  70. Papoutsakis, S., Pulgarin, C., Oller, I., Sánchez-Moreno, R., & Malato, S. (2016). Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products: The possibilities of cork boiling wastewater reuse. Chemical Engineering Journal, 304, 890–896.CrossRefGoogle Scholar
  71. Petri, B. G., Watts, R. J., Teel, A. L., & Hugling, S. G. (2011). Fundamentals of ISCO using hydrogen peroxide. In R. L. Siegrist, M. Crimi, & T. L. Simpkin (Eds.), Situ chemical oxidation for groundwater remediation (pp. 33–88). New York: Springer Science+Business Media, LLC.CrossRefGoogle Scholar
  72. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.CrossRefGoogle Scholar
  73. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009b). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.CrossRefGoogle Scholar
  74. Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., Lowry, G. V. (2015). Adsorbed poly (aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science Pollution Research Vol 25(8) 7157–7169.CrossRefGoogle Scholar
  75. Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50, 872–880.CrossRefGoogle Scholar
  76. Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent Iron. Environmental Science & Technology, 34, 2564–2569.CrossRefGoogle Scholar
  77. Ramos-Tejada, M. M., Ontiveros, A., Viota, J. L., & Durán, J. D. G. (2003). Interfacial and rheological properties of humic acid/hematite suspensions. Journal of Colloid and Interface Science, 268, 85–95.CrossRefGoogle Scholar
  78. Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zero-valent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44, 3455–3461.CrossRefGoogle Scholar
  79. Reynolds, G. W., Hoff, J. T., & Gillham, R. W. (1990). Sampling bias caused by materials used to monitor halocarbons in groundwater. Environmental Science & Technology, 24, 135–142.CrossRefGoogle Scholar
  80. Sakulchaicharoen, N., O'Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118, 117–127.CrossRefGoogle Scholar
  81. Sarathy, V., Tratnyek, P. G., Nurmi, J. T., Baer, D. R., Amonette, J. E., Chun, C. L., Penn, R. L., & Reardon, E. J. (2008). Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity. Journal of Physical Chemistry C, 112, 2286–2293.CrossRefGoogle Scholar
  82. Scheutjens, J. M. H. M., & Fleer, G. J. (1979). Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms. The Journal of Physical Chemistry, 83, 1619–1635.CrossRefGoogle Scholar
  83. Scheutjens, J. M. H. M., & Fleer, G. J. (1980). Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution. The Journal of Physical Chemistry, 84, 178–190.CrossRefGoogle Scholar
  84. Schlicker, O., Ebert, M., Fruth, M., Weidner, M., Wust, W., & Dahmke, A. (2000). Degradation of TCE with iron: The role of competing chromate and nitrate reduction. Groundwater, 38, 403–409.CrossRefGoogle Scholar
  85. Schrick, B., Blough, J. L., Jones, A. D., & Mallouk, T. E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 14, 5140–5147.CrossRefGoogle Scholar
  86. Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2003a). Environmental organic chemistry (2nd ed.). Hoboken: Wiley.Google Scholar
  87. Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2003b). Environmental organic chemistry (2nd ed.). Hoboken: Wiley-Interscience.Google Scholar
  88. Shih, Y.-H., Chen, Y.-C., Chen, M.-Y., Tai, Y.-T., & Tso, C.-P. (2009). Dechlorination of hexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallic particles. Colloids and Surfaces A, 332, 84–89.CrossRefGoogle Scholar
  89. Shu, H.-Y., Chang, M.-C., Chen, C.-C., & Chen, P.-E. (2010). Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. Journal of Hazardous Materials, 184, 499–505.CrossRefGoogle Scholar
  90. Song, H., & Carraway, E. R. (2005). Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions. Environmental Science & Technology, 39, 6237–6245.CrossRefGoogle Scholar
  91. Song, H., & Carraway, E. R. (2006). Reduction of chlorinated methanes by nano-sized zero-valent Iron. Kinetics, pathways, and effect of reaction conditions. Environmental Engineering Science, 23, 272–284.CrossRefGoogle Scholar
  92. Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. W. (2012a). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46, 5071–5084.CrossRefGoogle Scholar
  93. Su, Y.-F., Hsu, C.-Y., & Shih, Y.-H. (2012b). Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. Chemosphere, 88, 1346–1352.CrossRefGoogle Scholar
  94. Sun, Y.-P., Li, X.-Q., Zhang, W. X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A, 308, 60–66.CrossRefGoogle Scholar
  95. Scherer, M. M., Balko, B. A., Gallagher, D. A., Tratnyek, P. G. (1998). Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron. Environmental Science Technology, 32 (19), 3026–3033CrossRefGoogle Scholar
  96. Taha, M. R., & Ibrahim, A. H. (2014a). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering, 2, 1–8.CrossRefGoogle Scholar
  97. Taha, M. R., & Ibrahim, A. H. (2014b). COD removal from anaerobically treated palm oil mill effluent (AT-POME) via aerated heterogeneous Fenton process: Optimization study. Journal of Water Process Engineering, 1, 8–16.CrossRefGoogle Scholar
  98. Thompson, J. M., Chrisholm, B. J., & Bezbaruah, A. N. (2010). Reductive dechlorination of chloroacetanilide herbicide (Alachlor) using zero-valent iron nanoparticles. Environmental Engineering Science, 27, 227–232.CrossRefGoogle Scholar
  99. Tobiszewski, M., & Namieśnik, J. (2012). Abiotic degradation of chlorinated ethanes and ethenes in water. Environmental Science and Pollution Research, 19, 1994–2006.CrossRefGoogle Scholar
  100. Totten, L. A., & Roberts, A. L. (2010). Calculated one- and two-electron reduction potentials and related molecular descriptors for reduction of alkyl and vinyl halides in water. Critical Reviews in Environment Science and Technology, 31, 175–221.CrossRefGoogle Scholar
  101. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.CrossRefGoogle Scholar
  102. Tratnyek, P. G., Scherer, M. M., Deng, B., & Hu, S. (2001). Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research, 35, 4435–4443.CrossRefGoogle Scholar
  103. Usman, M., Hanna, K., & Haderlein, S. (2016). Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. The Science of the Total Environment, 569–570, 179–190.CrossRefGoogle Scholar
  104. Villa, R. D., Trovó, A. G., & Nogueira, R. F. P. (2010). Diesel degradation in soil by Fenton process. Journal of the Brazilian Chemical Society, 21, 1088–1095.CrossRefGoogle Scholar
  105. Vilve, M., Vilhunen, S., Vepsalainen, M., Kurniawan, T. A., Lehtonen, N., Isomaki, H., & Sillanpaa, M. (2010). Degradation of 1,2-dichloroethane from wash water of ion-exchange resin using Fenton’s oxidation. Environmental Science and Pollution Research International, 17, 875–884.CrossRefGoogle Scholar
  106. Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.CrossRefGoogle Scholar
  107. Wang, W., & Zhou, M. (2010). Degradation of trichloroethylene using solvent-responsive polymer coated Fe nanoparticles. Colloids and Surfaces A, 369, 232–239.CrossRefGoogle Scholar
  108. Wang, Q., Lee, S., & Choi, H. (2010). Aging study on the structure of Fe0-nanoparticles: Stabilization, characterization, and reactivity. Journal of Physical Chemistry C, 114, 2027–2033.CrossRefGoogle Scholar
  109. Wang, Y., Zhou, D., Wang, Y., Zhu, X., & Jin, S. (2011). Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. Journal of Environmental Sciences, 23, 1286–1292.CrossRefGoogle Scholar
  110. Wang, F., Wu, Y., Gao, Y., Li, H., & Chen, Z. (2016a). Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron. Separation and Purification Technology, 170, 337–343.CrossRefGoogle Scholar
  111. Wang, L., Yang, J., Li, Y., Lv, J., & Zou, J. (2016b). Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: Influencing factors and degradation intermediates. Chemical Engineering Journal, 284, 1058–1067.CrossRefGoogle Scholar
  112. Xu, L., & Wang, J. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186, 256–264.CrossRefGoogle Scholar
  113. Xu, X., Wo, J., Zhang, J., Wu, Y., & Liu, Y. (2009). Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination, 242, 346–354.CrossRefGoogle Scholar
  114. Yan, W., Herzing, A. A., Li, X.-Q., Kiely, C. J., & Zhang, W. X. (2010). Structural evolution of Pd-doped nanoscale zero-valent Iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environmental Science & Technology, 44, 4288–4294.CrossRefGoogle Scholar
  115. Yehia, F. Z., Eshaq, G., Rabie, A. M., Mady, A. H., & ElMetwally, A. E. (2015). Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation. Egyptian Journal of Petroleum, 24, 13–18.CrossRefGoogle Scholar
  116. Yin, X., Liu, W., & Ni, J. (2014). Removal of coexisting Cr(VI) and 4-chlorophenol through reduction and Fenton reaction in a single system. Chemical Engineering Journal, 248, 89–97.CrossRefGoogle Scholar
  117. Yu, R. F., Chen, H. W., Cheng, W. P., Lin, Y. J., & Huang, C. L. (2014). Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater. Journal of the Taiwan Institute of Chemical Engineers, 45, 947–954.CrossRefGoogle Scholar
  118. Yu, B., Jin, X., Kuang, Y., Megharaj, M., Naidu, R., & Chen, Z. (2015). An integrated biodegradation and nano-oxidation used for the remediation of naphthalene from aqueous solution. Chemosphere, 141, 205–211.CrossRefGoogle Scholar
  119. Zha, S., Cheng, Y., Gao, Y., Chen, Z., Megharaj, M., & Naidu, R. (2014). Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chemical Engineering Journal, 255, 141–148.CrossRefGoogle Scholar
  120. Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.CrossRefGoogle Scholar
  121. Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic comtaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.CrossRefGoogle Scholar
  122. Zhang, X., Lin, Y.-M., Shan, X.-Q., & Chen, Z.-L. (2010). Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron. Chemical Engineering Journal, 158, 566–570.CrossRefGoogle Scholar
  123. Zhang, R., Li, J., Shen, C. L. J., Sun, X., Han, W., & Wang, L. (2013). Reduction of nitrobenzene using nanoscale zero-valent iron confined in channels of ordered mesoporous silica. Colloids and Surfaces A, 425, 108–114.CrossRefGoogle Scholar
  124. Zhang, W., Gao, H., He, J., Yang, P., Wang, D., Ma, T., Xia, H., & Xu, X. (2017). Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway. Separation and Purification Technology, 172, 158–167.CrossRefGoogle Scholar
  125. Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., McPherson, G. L., Piringer, G., & John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron – silica composites for trichloroethylene remediation. Environmental Science & Technology, 42, 4494–4499.CrossRefGoogle Scholar
  126. Zhou, T., Li, Y., Ji, J., Wong, F.-S., & Lu, X. (2008). Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: Kinetic, pathway and effect factors. Separation and Purification Technology, 62, 551–558.CrossRefGoogle Scholar
  127. Zhou, H., Han, J., Baig, S. A., & Xu, X. (2011). Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles. Journal of Hazardous Materials, 198, 7–12.CrossRefGoogle Scholar
  128. Zhou, H., Shen, Y., Lv, P., Wang, J., & Li, P. (2015). Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system. Journal of Hazardous Materials, 284, 241–252.CrossRefGoogle Scholar
  129. Zhu, B.-W., Lim, T.-T., & Feng, J. (2006). Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 65, 1137–1145.CrossRefGoogle Scholar
  130. Zhu, B.-W., Lim, T.-T., & Feng, J. (2008). Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: Adsorption, reaction kinetics, and interfacial interactions. Environmental Science & Technology, 42, 4513–4519.CrossRefGoogle Scholar
  131. Zhu, N., Luan, H., Yuan, S., Chen, J., Wu, X., & Wang, L. (2010). Effective dechlorination of HCB by nanoscale Cu/Fe particles. Journal of Hazardous Materials, 176, 1101–1105.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tanapon Phenrat
    • 1
    • 2
  • Thi Song Thao Le
    • 1
    • 2
  • Bhanuphong Naknakorn
    • 3
    • 4
  • Gregory V. Lowry
    • 4
    • 5
  1. 1.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  2. 2.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of EngineeringNaresuan UniversityPhitsanulokThailand
  3. 3.Thai Plastic and Chemicals PCLBangkokThailand
  4. 4.Center for Environmental Implications of Nanotechnology (CEINT)Carnegie Mellon UniversityPittsburghUSA
  5. 5.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations