NZVI Synthesis and Characterization

  • Katrin MackenzieEmail author
  • Anett Georgi


This chapter provides an overview of NZVI types used to date for environmental restoration. The particle types are introduced systematically from bare NZVI to the manifold modifications leading to NZVI-containing composites or emulsions. Properties of these NZVI types which are important for the intended use as water treatment reagent and methods for their characterization are compiled. For each of the main NZVI groups – bare and bimetallic NZVI, polymer-modified NZVI, supported NZVI and emulsified NZVI, approved synthesis strategies and resulting NZVI properties are described.


Nanoscale zerovalent iron Synthesis Characterization 


  1. Bai, X., Ye, Z. F., Qu, Y. Z., Li, Y. F., & Wang, Z. Y. (2009). Immobilization of nanoscale Fe-0 in and on PVA microspheres for nitrobenzene reduction. Journal of Hazardous Materials, 172(2–3), 1357–1364.CrossRefGoogle Scholar
  2. Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G. V., & Merly, C. (2014). A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites. Available via:
  3. Berge, N. D., & Ramsburg, C. A. (2009). Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental Science & Technology, 43(13), 5060–5066.CrossRefGoogle Scholar
  4. Bezbaruah, A. N., Krajangpan, S., Chisholm, B. J., Khan, E., & Bermudez, J. J. E. (2009). Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 166(2–3), 1339–1343.CrossRefGoogle Scholar
  5. Bezbaruah, A. N., Shanbhogue, S. S., Simsek, S., & Khan, E. (2011). Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. Journal of Nanoparticle Research, 13(12), 6673–6681.CrossRefGoogle Scholar
  6. Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D., & Iglesias, M. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 243, 14–23.CrossRefGoogle Scholar
  7. Blacha, A., Krukiewicz, K., & Zak, J. (2011). The covalent grafting of polymers to the solid surface. CHEMIK, 65(1), 11–19.Google Scholar
  8. Bleyl, S., Kopinke, F.-D., & Mackenzie, K. (2012). Carbo-Iron®-synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chemical Engineering Journal, 191, 588–595.CrossRefGoogle Scholar
  9. Bleyl, S., Mackenzie, K., Georgi, A., & Kopinke, F. –D. (2015). Nanoiron and Carbo-Iron® particle transport in aquifer sediments – Targeted deposition. In: Conference proceedings, AquaConSoil 2015. Copenhagen.Google Scholar
  10. Boudart, M., Delbouille, A., Dumesic, J. A., Khammouma, S., & Topsoe, H. (1975). Surface, catalytic and magnetic-properties of small Iron particles. 1. Preparation and characterization of samples. Journal of Catalysis, 37(3), 486–502.CrossRefGoogle Scholar
  11. Buchau, A., Rucker, W. M., de Boer, C. V., & Klaas, N. (2010). Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface. IET Science, Measurement and Technology, 4(6), 289–297.CrossRefGoogle Scholar
  12. Bystrzejewski, M. (2011). Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles. Journal of Solid State Chemistry, 184(6), 1492–1498.CrossRefGoogle Scholar
  13. Cantrell, K. J., Kaplan, D. I., & Gilmore, T. J. (1997). Injection of colloidal Fe-0 particles in sand with shear-thinning fluids. Journal of Environmental Engineering, ASCE, 123(8), 786–791.CrossRefGoogle Scholar
  14. Cao, J. S., Elliott, D., & Zhang, W. X. (2003). Nanoscale iron particles for perchlorate reduction. Abstracts of Papers of the American Chemical Society, 225, U972–U972.Google Scholar
  15. Cao, H., Li, R., Gui, Q. J., Wang, X. H., & Bin, X. B. (2007). Characteristics and microstructure of graphite encapsulated iron nanoparticles. Journal of Wuhan University of Technology, 22(2), 214–217.CrossRefGoogle Scholar
  16. Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 110(1–2), 49–74.CrossRefGoogle Scholar
  17. Chen, A. A., Vannice, M. A., & Phillips, J. (1987). Effect of support pretreatments on carbon-supported Fe particles. The Journal of Physical Chemistry, 91(24), 6257–6269.CrossRefGoogle Scholar
  18. Choi, C. J., Dong, X. L., & Kim, B. K. (2001). Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scripta Materialia, 44(8–9), 2225–2229.CrossRefGoogle Scholar
  19. Cirtiu, C. M., Raychoudhury, T., Ghoshal, S., & Moores, A. (2011). Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids and Surfaces A, 390(1–3), 95–104.CrossRefGoogle Scholar
  20. Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43(15), 3717–3726.CrossRefGoogle Scholar
  21. Cook, S. M. (2009). Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. Jackson State University.
  22. Dalla Vecchia, E., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43(23), 8942–8947.CrossRefGoogle Scholar
  23. Dror, I., Jacov, O. M., Cortis, A., & Berkowitz, B. (2012). Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. ACS Applied Materials & Interfaces, 4(7), 3416–3423.CrossRefGoogle Scholar
  24. Dumitrache, F., Morjan, I., Alexandrescu, R., Morjan, R. E., Voicu, I., Sandu, I., Soare, I., Ploscaru, M., Fleaca, C., Ciupina, V., Prodan, G., Rand, B., Brydson, R., & Woodword, A. (2004). Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diamond and Related Materials, 13(2), 362–370.CrossRefGoogle Scholar
  25. Eglal, M. M., & Ramamurthy, A. S. (2014). Nanofer ZVI: Morphology, particle characteristics, kinetics, and applications. Journal of Nanomaterials, 29, 1–11.CrossRefGoogle Scholar
  26. Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology, 35(24), 4922–4926.CrossRefGoogle Scholar
  27. Elliott, D. W., Lien, H.-L., & Zhang, W.-X. (2012). Nanoscale zero-valent iron (nZVI)for site remediation. In G. E. Fryxell & G. Cao (Eds.), Environmental applications of nanomaterials: Synthesis, sorbents and sensors. World Scientific. Scholar
  28. Fang, Y. X., & Al-Abed, S. R. (2008). Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: Effects of solvent, temperature, and PCB concentration. Applied Catalysis B: Environmental, 78(3–4), 371–380.CrossRefGoogle Scholar
  29. Fernandez-Pacheco, R., Arruebo, M., Marquina, C., Ibarra, R., Arbiol, J., & Santamaria, J. (2006). Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology, 17(5), 1188–1192.CrossRefGoogle Scholar
  30. Gastone, F., Tosco, T., & Sethi, R. (2014). Guar gum solutions for improved delivery of iron particles in porous media (part 1): Porous medium rheology and guar gum-induced clogging. Journal of Contaminant Hydrology, 166, 23–33.CrossRefGoogle Scholar
  31. Golas, P., Matyjaszewski, K., Lowry, G. V., & Tilton, R. D. (2010). Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir, 26(22), 16890–16900.CrossRefGoogle Scholar
  32. Grittini, C., Malcomson, M., Fernando, Q., & Korte, N. (1995). Rapid dechlorination of polychlorinated-biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11), 2898–2900.CrossRefGoogle Scholar
  33. He, F., & Zhao, D. Y. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41(17), 6216–6221.CrossRefGoogle Scholar
  34. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.CrossRefGoogle Scholar
  35. Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, I. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology, 42(7), 2600–2605.CrossRefGoogle Scholar
  36. Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1(5), 482–501.CrossRefGoogle Scholar
  37. Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., & Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environmental Science & Technology, 41(18), 6418–6424.CrossRefGoogle Scholar
  38. Jabeen, H., Kemp, K. C., & Chandra, V. (2013). Synthesis of nano zerovalent iron nanoparticles – Graphene composite for the treatment of lead contaminated water. Journal of Environmental Management, 130, 429–435.CrossRefGoogle Scholar
  39. Jia, H. Z., & Wang, C. Y. (2013). Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: Reactivity and stability. Environmental Technology, 34(1), 25–33.CrossRefGoogle Scholar
  40. Johnson, R. L., Nurmi, J. T., Johnson, G. S. O., Fan, D. M., Johnson, R. L. O., Shi, Z. Q., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent Iron. Environmental Science & Technology, 47(3), 1573–1580.CrossRefGoogle Scholar
  41. Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291–1298.CrossRefGoogle Scholar
  42. Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1823–1831.CrossRefGoogle Scholar
  43. Keenan, C. R., & Sedlak, D. L. (2008). Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen. Environmental Science & Technology, 42(4), 1262–1267.CrossRefGoogle Scholar
  44. Kharisov, B. I., Dias, H. V. R., Kharissova, O. V., Jimenez-Perez, V. M., Perez, B. O., & Flores, B. M. (2012). Iron-containing nanomaterials: Synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325–9358.CrossRefGoogle Scholar
  45. Kharissova, O. V., Dias, H. V. R., Kharisov, B. I., Perez, B. O., & Perez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240–248.CrossRefGoogle Scholar
  46. Kirschling, T. L., Golas, P. L., Unrine, J. M., Matyjaszewski, K., Gregory, K. B., Lowry, G. V., & Tilton, R. D. (2011). Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environmental Science & Technology, 45(12), 5253–5259.CrossRefGoogle Scholar
  47. Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., Matheis, A., Paar, H., Schaffer, A., Schell, H., Schiwy, A., Schmidt, K. R., Strutz, T. J., Thummler, S., Tiehm, A., & Braun, J. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environment and Earth Science, 72(9), 3339–3352.CrossRefGoogle Scholar
  48. Kong, Q. S., Guo, C. X., Wang, B. B., Ji, Q., & Xia, Y. Z. (2011). A facile preparation of carbon-supported nanoscale zero-valent Iron fibers. Materials Science Forum, 688, 349–352.CrossRefGoogle Scholar
  49. Kopinke, F. D., Speichert, G., Mackenzie, K., & Hey-Hawkins, E. (2016). Reductive dechlorination in water: Interplay of sorption and reactivity. Applied Catalysis B: Environmental, 181, 747–753.CrossRefGoogle Scholar
  50. Korte, N. E., Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B., & Fernando, Q. (2000). Field application of palladized iron for the dechlorination of trichloroethene. Waste Management, 20(8), 687–694.CrossRefGoogle Scholar
  51. Kosmulski, M. (2014). The pH dependent surface charging and points of zero charge. VI. Update. Journal of Colloid and Interface Science, 426, 209–212.CrossRefGoogle Scholar
  52. Krajangpan, S., Jarabek, L., Jepperson, J., Chisholm, B., & Bezbaruah, A. (2008). Polymer modified iron nanoparticles for environmental remediation. Polymer Preprints, 49, 921–922.Google Scholar
  53. Krajangpan, S., Kalita, H., Chisholm, B. J., & Bezbaruah, A. N. (2012). Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: Dispersibility and contaminant treatability. Environmental Science & Technology, 46(18), 10130–10136.Google Scholar
  54. Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., & O’Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47(13), 7332–7340.CrossRefGoogle Scholar
  55. Kustov, L. M., Finashina, E. D., Shuvalova, E. V., Tkachenko, O. P., & Kirichenko, O. A. (2011). Pd-Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environment International, 37(6), 1044–1052.CrossRefGoogle Scholar
  56. Li, L., Fan, M. H., Brown, R. C., Van Leeuwen, J. H., Wang, J. J., Wang, W. H., Song, Y. H., & Zhang, P. Y. (2006a). Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36(5), 405–431.CrossRefGoogle Scholar
  57. Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006b). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122.CrossRefGoogle Scholar
  58. Li, S. L., Yan, W. L., & Zhang, W. X. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 11(10), 1618–1626.CrossRefGoogle Scholar
  59. Li, Y. C., Jin, Z. H., & Li, T. L. (2012). A novel and simple method to synthesize SiO2-coated Fe nanocomposites with enhanced Cr (VI) removal under various experimental conditions. Desalination, 288, 118–125.CrossRefGoogle Scholar
  60. Li, J., Bhattacharjee, S., & Ghoshal, S. (2015). The effects of viscosity of carboxymethyl cellulose on aggregation and transport of nanoscale zerovalent iron. Colloids and Surfaces A, 481, 451–459.CrossRefGoogle Scholar
  61. Lien, H. L., & Zhang, W. X. (1999). Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, 125(11), 1042–1047.CrossRefGoogle Scholar
  62. Lien, H. L., & Zhang, W. X. (2007). Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental, 77(1–2), 110–116.CrossRefGoogle Scholar
  63. Ling, X. F., Li, J. S., Zhu, W., Zhu, Y. Y., Sun, X. Y., Shen, J. Y., Han, W. Q., & Wang, L. J. (2012). Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere, 87(6), 655–660.CrossRefGoogle Scholar
  64. Liu, Y. Q., & Lowry, G. V. (2006). Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environmental Science & Technology, 40(19), 6085–6090.CrossRefGoogle Scholar
  65. Liu, Y. Q., Choi, H., Dionysiou, D., & Lowry, G. V. (2005a). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17(21), 5315–5322.CrossRefGoogle Scholar
  66. Liu, Y. Q., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005b). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39(5), 1338–1345.CrossRefGoogle Scholar
  67. Liu, X. W., Wang, D. S., & Li, Y. D. (2012). Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 7(5), 448–466.CrossRefGoogle Scholar
  68. Liu, W. J., Qian, T. T., & Jiang, H. (2014). Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 236, 448–463.CrossRefGoogle Scholar
  69. Lowry, G. V. (2007). Nanomaterials for groundwater remediation. In M. R. Wiesner & J.-Y. Bottero (Eds.), Environmental nanotechnology. New York: The McGraw-Hill Companies.Google Scholar
  70. Lowry, G. V., & Johnson, K. M. (2004). Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 38(19), 5208–5216.CrossRefGoogle Scholar
  71. Lowry, G. V., Hill, R., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., Nobbmann, U., Syare, P., & Rumble, J. (2016). Guidance for measuring, interpreting, and reporting zeta potential measurements for environmental nanotechnology and Nanotoxicology. Environmental Science: Nano, 3, 953–965. Scholar
  72. Lv, X. S., Xue, X. Q., Jiang, G. M., Wu, D. L., Sheng, T. T., Zhou, H. Y., & Xu, X. H. (2014). Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. Journal of Colloid and Interface Science, 417, 51–59.CrossRefGoogle Scholar
  73. Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. The Science of the Total Environment, 445, 1–8.CrossRefGoogle Scholar
  74. Mackenzie, K., Schierz, A., Georgi, A., & Kopinke, F. D. (2008). Colloidal activated carbon and carbo-iron – Novel materials for in-situ groundwater treatment. Global NEST Journal, 10(1), 54–61.Google Scholar
  75. Mackenzie, K., Bleyl, S., Georgi, A., & Kopinke, F. D. (2012). Carbo-Iron – An Fe/AC composite – As alternative to nano-iron for groundwater treatment. Water Research, 46(12), 3817–3826.CrossRefGoogle Scholar
  76. Mackenzie, K., Bleyl, S., Kopinke, F.-D., Doose, H., & Bruns, J. (2016). Carbo-Iron as improvement of the nanoiron technology: From laboratory design to the field test. Science Total Environment. Scholar
  77. Martinez-Baez, E., Dominguez, J., Ortega-Pijeira, M. S., Tejeda-Mazola, Y., Borroto, J., & Rivera-Denis, A. (2015). Synthesis and evaluation of ferragels as prospective solid Tc-99m radiotracers. Journal of Radioanalytical and Nuclear Chemistry, 304(1), 267–272.CrossRefGoogle Scholar
  78. McCurrie, R. A. (1994). Ferromagnetic materials. London: Academic Press.Google Scholar
  79. Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J., & Bylaska, E. J. (2004). Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environmental Science & Technology, 38(1), 139–147.CrossRefGoogle Scholar
  80. Mueller, N. C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environemental Science and Pollution Research, 19(2), 550–558.CrossRefGoogle Scholar
  81. Nadagouda, M. N., & Lytle, D. A. (2011). Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies. Journal of Nanotechnology, 972486, 1–8.Google Scholar
  82. Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C. M., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221–1230.CrossRefGoogle Scholar
  83. Pennell, K. D., Pope, G. A., & Abriola, L. M. (1996). Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environmental Science & Technology, 30(4), 1328–1335.CrossRefGoogle Scholar
  84. Pereira, M. C., Coelho, F. S., Nascentes, C. C., Fabris, J. D., Araujo, M. H., Sapag, K., Oliveira, L. C. A., & Lago, R. M. (2010). Use of activated carbon as a reactive support to produce highly active-regenerable Fe-based reduction system for environmental remediation. Chemosphere, 81(1), 7–12.CrossRefGoogle Scholar
  85. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41(1), 284–290.CrossRefGoogle Scholar
  86. Phenrat, T., Saleh, N., Sirk, K., Kim, H. J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10(5), 795–814.CrossRefGoogle Scholar
  87. Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe-0 nanoparticles in sand columns. Environmental Science & Technology, 43(13), 5079–5085.CrossRefGoogle Scholar
  88. Phenrat, T., Fagerlund, F., Illangasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe-0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45(14), 6102–6109.CrossRefGoogle Scholar
  89. Ponder, S. M., & Mallouk, T. F. (2004). Powerful reductant for decontamination of groundwater and surface streams. U.S. Patent No. 6,689,485.Google Scholar
  90. Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564–2569.CrossRefGoogle Scholar
  91. Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L. F., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13(2), 479–486.CrossRefGoogle Scholar
  92. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W. S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39(5), 1309–1318.CrossRefGoogle Scholar
  93. Ramos, M. A. V., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: Understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594.CrossRefGoogle Scholar
  94. Raychoudhury, T., Naja, G., & Ghoshal, S. (2010). Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Journal of Contaminant Hydrology, 118(3–4), 143–151.CrossRefGoogle Scholar
  95. Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46(6), 1735–1744.CrossRefGoogle Scholar
  96. Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44(9), 3455–3461.CrossRefGoogle Scholar
  97. Robinson, I., Zacchini, S., Tung, L. D., Maenosono, S., & Thanh, N. T. K. (2009). Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters. Chemistry of Materials, 21(13), 3021–3026.CrossRefGoogle Scholar
  98. Rónavári, A., Balázs, M., Tolmacsov, P., Molnár, C., Kiss, I., Kukovecz, Á., & Kónya, Z. (2016). Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Research, 95, 165–173.CrossRefGoogle Scholar
  99. Rose, J., Thill, A., & Brant, J. (2007). Methods for structural and chemical characterization of nanomaterials. In M. R. Wiesner & J.-Y. Bottero (Eds.), Environmental nanotechnology: Applications and impacts of nanomaterials (pp. 105–154). New York: McGraw-Hill.Google Scholar
  100. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyiaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.CrossRefGoogle Scholar
  101. Saleh, N., Sirk, K., Liu, Y. Q., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.CrossRefGoogle Scholar
  102. Sarathy, V., Tratnyek, P. G., Nurmi, J. T., Baer, D. R., Amonette, J. E., Chun, C. L., Penn, R. L., & Reardon, E. J. (2008). Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity. Journal of Physical Chemistry C, 112(7), 2286–2293.CrossRefGoogle Scholar
  103. Schrick, B., Blough, J. L., Jones, A. D., & Mallouk, T. E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 14(12), 5140–5147.CrossRefGoogle Scholar
  104. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16(11), 2187–2193.CrossRefGoogle Scholar
  105. Scott, T. B., Dickinson, M., Crane, R. A., Riba, O., Hughes, G. M., & Allen, G. C. (2010). The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. Journal of Nanoparticle Research, 12(5), 1765–1775.CrossRefGoogle Scholar
  106. Simon, J. A. (2015). Editor’s perspective-an in situ revelation: First retard migration, then treat. Remediation Journal, 25(2), 1–7.CrossRefGoogle Scholar
  107. Sohn, K., Kang, S. W., Ahn, S., Woo, M., & Yang, S. K. (2006). Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation. Environmental Science & Technology, 40(17), 5514–5519.CrossRefGoogle Scholar
  108. Soukupova, J., Zboril, R., Medrik, I., Filip, J., Safarova, K., Ledl, R., Mashlan, M., Nosek, J., & Cernik, M. (2015). Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chemical Engineering Journal, 262, 813–822.CrossRefGoogle Scholar
  109. Stevenson, S. A., Goddard, S. A., Arai, M., & Dumesic, J. A. (1989). Effects of preparation variables on particle-size and morphology for carbon-supported and alumina-supported metallic iron samples. The Journal of Physical Chemistry, 93(5), 2058–2065.CrossRefGoogle Scholar
  110. Su, C. M., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46(16), 5071–5084.CrossRefGoogle Scholar
  111. Su, C. M., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2013). Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. Water Research, 47(12), 4095–4106.CrossRefGoogle Scholar
  112. Sun, Y. P., Li, X. Q., Cao, J. S., Zhang, W. X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1–3), 47–56.CrossRefGoogle Scholar
  113. Sun, Q., Feitz, A. J., Guan, J., & Waite, T. D. (2008). Comparison of the reactivity of nanosized zero-valent iron (nZVI) particles produced by borohydride and dithionite reduction of iron salts. Nano, 3(5), 341–349.CrossRefGoogle Scholar
  114. Sunkara, B., Zhan, J. J., He, J. B., McPherson, G. L., Piringer, G., & John, V. T. (2010). Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2(10), 2854–2862.CrossRefGoogle Scholar
  115. Sunkara, B., Zhan, J. J., Kolesnichenko, I., Wang, Y. Q., He, J. B., Holland, J. E., McPherson, G. L., & John, V. T. (2011). Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir, 27(12), 7854–7859.CrossRefGoogle Scholar
  116. Sunkara, B., Su, Y., Zhan, J. J., He, J. B., Mcpherson, G. L., & John, V. T. (2015). Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Frontiers of Environmental Science & Engineering, 9(5), 939–947.CrossRefGoogle Scholar
  117. Suslick, K. S., Fang, M. M., & Hyeon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961.CrossRefGoogle Scholar
  118. Tang, H., Zhu, D. Q., Li, T. L., Kong, H. N., & Chen, W. (2011). Reductive dechlorination of activated carbon-adsorbed trichloroethylene by zero-valent iron: Carbon as electron shuttle. Journal of Environmental Quality, 40(6), 1878–1885.CrossRefGoogle Scholar
  119. Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324(1–2), 71–79.CrossRefGoogle Scholar
  120. Tokoro, H., Fujii, S., & Oku, T. (2004). Iron nanoparticles coated with graphite nanolayers and carbon nanotubes. Diamond and Related Materials, 13(4–8), 1270–1273.CrossRefGoogle Scholar
  121. Toshima, N., & Yonezawa, T. (1998). Bimetallic nanoparticles – novel materials for chemical and physical applications. New Journal of Chemistry, 22(11), 1179–1201.CrossRefGoogle Scholar
  122. Tseng, H. H., Su, J. G., & Liang, C. J. (2011). Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Journal of Hazardous Materials, 192(2), 500–506.CrossRefGoogle Scholar
  123. Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38(2), 529–536.CrossRefGoogle Scholar
  124. U.S. EPA. (2011). Selected sites using or testing nanoparticles for remediation.
  125. Uegami, M., Kawano, J., Okita, T., Fujii, Y., Okinaka, K., & Kakuyua, K. (2003). Iron particles for purifying contaminated soil or ground water. Process for producing the iron particles, purifying agent comprising the iron particles, process for producing the purifying agent and method of purifying contaminated soil or ground water. Toda Kogyo Corp., US Patent Application 2003/0217974 A1.Google Scholar
  126. Wan, J. J., Wan, J. Q., Ma, Y. W., Huang, M. Z., Wang, Y., & Ren, R. (2013). Reactivity characteristics of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation. Chemical Engineering Journal, 221, 300–307.CrossRefGoogle Scholar
  127. Wang, Z. Q. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering, 1(12), 1551–1554.CrossRefGoogle Scholar
  128. Wang, Z. H., & Acosta, E. (2013). Formulation design for target delivery of iron nanoparticles to TCE zones. Journal of Contaminant Hydrology, 155, 9–19.CrossRefGoogle Scholar
  129. Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154–2156.CrossRefGoogle Scholar
  130. Wang, Q. L., Kanel, S. R., Park, H., Ryu, A., & Choi, H. (2009). Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area. Journal of Nanoparticle Research, 11(3), 749–755.CrossRefGoogle Scholar
  131. Wang, Q., Lee, S., & Choi, H. (2010). Aging study on the structure of Fe-0-nanoparticles: Stabilization, characterization, and reactivity. Journal of Physical Chemistry C, 114(5), 2027–2033.CrossRefGoogle Scholar
  132. Wang, C., Xu, Z., Ding, G., Wang, X., Zhao, M., Ho, S. S. H., & Li, Y. (2016). Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron. Desalination and Water Treatment 57(11), 5065–5078.CrossRefGoogle Scholar
  133. Wei, Z. Q., Liu, L. G., Yang, H., Zhang, C. R., & Feng, W. J. (2011a). Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma. Transactions of Nonferrous Metals Society of China, 21(9), 2026–2030.CrossRefGoogle Scholar
  134. Wei, Z. Q., Wang, X. Y., & Yang, H. (2011b). Preparation of carbon-encapsulated Fe core-shell nanostructures by confined arc plasma. Materials Science Forum, 688, 245–249.CrossRefGoogle Scholar
  135. Wiberg, N., Holleman, A. F., & Wiberg, E. E. (2001). Holleman-Wiberg’s inorganic chemistry. New York: Academic Press.Google Scholar
  136. Xu, Y., & Zhang, W. X. (2000). Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Industrial and Engineering Chemistry Research, 39(7), 2238–2244.CrossRefGoogle Scholar
  137. Xu, F. Y., Deng, S. B., Xu, J., Zhang, W., Wu, M., Wang, B., Huang, J., & Yu, G. (2012). Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environmental Science & Technology, 46(8), 4576–4582.CrossRefGoogle Scholar
  138. Yan, W. L., Ramos, M. A. V., Koel, B. E., & Zhang, W. X. (2012). As(III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 116(9), 5303–5311.CrossRefGoogle Scholar
  139. Yan, W. L., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environmental Science: Processes & Impacts, 15(1), 63–77.Google Scholar
  140. Yang, G. C. C., & Chang, Y. I. (2011). Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Separation and Purification Technology, 79(2), 278–284.CrossRefGoogle Scholar
  141. Yang, N. L., Desai, A., Mahajan, D., & Rafailovich, M. H. (2003). Synthesis and characterization of nano-sized iron particles on a polystyrene support as potential Fischer-Tropsch catalysts. Abstracts of Papers of the American Chemical Society, 226, U565–U565.Google Scholar
  142. Yuan, M. L., Tao, J. H., Yan, G. J., Tan, M. Y., & Qiu, G. Z. (2010). Preparation and characterization of Fe/SiO2 core/shell nanocomposites. Transactions of Nonferrous Metals Society of China, 20(4), 632–636.CrossRefGoogle Scholar
  143. Zhan, J. J., Zheng, T. H., Piringer, G., Day, C., McPherson, G. L., Lu, Y. F., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42(23), 8871–8876.CrossRefGoogle Scholar
  144. Zhan, J. J., Sunkara, B., Le, L., John, V. T., He, J. B., McPherson, G. L., Piringer, G., & Lu, Y. F. (2009). Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 43(22), 8616–8621.CrossRefGoogle Scholar
  145. Zhan, J. J., Kolesnichenko, I., Sunkara, B., He, J. B., McPherson, G. L., Piringer, G., & John, V. T. (2011). Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 45(5), 1949–1954.CrossRefGoogle Scholar
  146. Zhang, H., Jin, Z. H., Han, L., & Qin, C. H. (2006). Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China, 16, S345–S349.CrossRefGoogle Scholar
  147. Zhang, Y., Li, Y. M., & Zheng, X. M. (2011). Removal of atrazine by nanoscale zero valent iron supported on organobentonite. The Science of the Total Environment, 409(3), 625–630.CrossRefGoogle Scholar
  148. Zhang, Y. Y., Jiang, H., Zhang, Y., & Xie, J. F. (2013). The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412–419.CrossRefGoogle Scholar
  149. Zhao, X., Lv, L., Pan, B. C., Zhang, W. M., Zhang, S. J., & Zhang, Q. X. (2011). Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, 170(2–3), 381–394.CrossRefGoogle Scholar
  150. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.CrossRefGoogle Scholar
  151. Zheng, T. H., Zhan, J. J., He, J. B., Day, C., Lu, Y. F., Mcpherson, G. L., Piringer, G., & John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environmental Science & Technology, 42(12), 4494–4499.CrossRefGoogle Scholar
  152. Zhou, T., Li, Y. Z., & Lim, T. T. (2010). Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism. Separation and Purification Technology, 76(2), 206–214.CrossRefGoogle Scholar
  153. Zhu, B. W., & Lim, T. T. (2007). Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration. Environmental Science & Technology, 41(21), 7523–7529.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Helmholtz Centre for Environmental Research – UFZLeipzigGermany

Personalised recommendations