Advertisement

State of Knowledge and Future Needs for NZVI Applications in Subsurface Remediation

  • Gregory V. LowryEmail author
  • Tanapon Phenrat
Chapter

Abstract

This final chapter summarizes the key lessons learned from a large number of laboratory-scale, intermediate-scale, and well-documented field-scale experiments using NZVI for in situ remediation presented in this book. The goal is to provide guidance to site managers and remediation professionals who are considering the use of NZVI for in situ treatment of a contaminant source zone, particularly those containing dense nonaqueous phase liquids or reducible heavy metals, as these are the most prevalent types of sites for application of NZVI. It also provides guidance on site conditions where NZVI treatment may be a viable option in terms of reactivity with contaminants of concern, reactive lifetime, and particle deliverability. The chapter also highlights the importance of NZVI characteristics to provide longer reactive lifetimes, viable injection methods for emplacing NZVI in the desired location in the subsurface, and detailed site characterizations as well as suitable laboratory feasibility studies. Future research needs for more effective NZVI applications in subsurface remediation, including a better understanding of combined NZVI-monitored natural recovery or bioremediation strategies and more detailed performance evaluations, are also discussed.

Keywords

Nanoscale zerovalent iron Lesson learned Future need Guidance Field implementation 

References

  1. Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2015). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe nanoparticles in saturated porous media. Environmental Science and Pollution Research International, 25(8), 7180–7199.CrossRefGoogle Scholar
  2. Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G. V., & Merly, C. (2015). A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites. Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. European Union Seventh Framework Programme (FP7/2007-2013), Project Nr.: 309517, p. 76.Google Scholar
  3. Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116, 35–46.CrossRefGoogle Scholar
  4. Busch, J., Meißner, T., Potthoff, A., Bleyl, S., Georgi, A., Mackenzie, K., Trabitzsch, R., Werban, U., & Oswald, S. E. (2015). A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Journal of Contaminant Hydrology, 181, 59–68.CrossRefGoogle Scholar
  5. Chowdhury, A. I., Krol, M. M., Kocur, C. M., Boparai, H. K., Weber, K. P., Sleep, B. E., & O’Carroll, D. M. (2015). nZVI injection into variably saturated soils: Field and modeling study. Journal of Contaminant Hydrology, 183, 16–28.CrossRefGoogle Scholar
  6. Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H.-J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131, 9–28.CrossRefGoogle Scholar
  7. Fan, D., Anitori, R. P., Tebo, B. M., Tratnyek, P. G., Lezama Pacheco, J. S., Kukkadapu, R. K., Engelhard, M. H., Bowden, M. E., Kovarik, L., & Arey, B. W. (2013). Reductive sequestration of pertechnetate (99TcO4) by nano zero-valent iron (nZVI) transformed by abiotic sulfide. Environmental Science & Technology, 47, 5302–5310.CrossRefGoogle Scholar
  8. Fan, D., O’Brien Johnson, G., Tratnyek, P. G., & Johnson, R. L. (2016). Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environmental Science & Technology, 50, 9558–9565.CrossRefGoogle Scholar
  9. Flores Orozco, A., Velimirovic, M., Tosco, T., Kemna, A., Sapion, H., Klaas, N., Sethi, R., & Bastiaens, L. (2015). Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging. Environmental Science & Technology, 49, 5593–5600.CrossRefGoogle Scholar
  10. Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. L., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47, 1573–1580.CrossRefGoogle Scholar
  11. Joyce, R. A., Glaser Ii, D. R., Werkema, D. D., Jr., & Atekwana, E. A. (2012). Spectral induced polarization response to nanoparticles in a saturated sand matrix. Journal of Applied Geophysics, 77, 63–71.CrossRefGoogle Scholar
  12. Kim, H. J., Leitch, M., Naknakorn, B., Tilton, R. D., & Lowry, G. V. (2017). Effect of emplaced nZVI mass and groundwater velocity on PCEdechlorination and hydrogen evolution in water-saturated sand. Journal of Hazardous Materials, 322, 136–144.CrossRefGoogle Scholar
  13. Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O’Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49, 8648–8656.CrossRefGoogle Scholar
  14. Kocur, C. M. D., Lomheim, L., Molenda, O., Weber, K. P., Austrins, L. M., Sleep, B. E., Boparai, H. K., Edwards, E. A., & O’Carroll, D. M. (2016). Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection. Environmental Science & Technology, 50, 7658–7670.CrossRefGoogle Scholar
  15. Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41, 7881–7887.CrossRefGoogle Scholar
  16. Lowry, G. V., Phenrat, T., Fagerlund, F., Illanagasekare, T., Tratnyek, P. G., & Johnson, R. L. (2012). Fundamental study of the delivery of nanoiron to DNAPL source zones in naturally heterogeneous field systems. SERDP Project ER-1485, p. 133.Google Scholar
  17. Mackenzie, K., Bleyl, S., Kopinke, F. D., Doose, H., & Bruns, J. (2016). Carbo-Iron as improvement of the nanoiron technology: From laboratory design to the field test. Science of the Total Environment, 563–564, 641–648.CrossRefGoogle Scholar
  18. Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International, 19, 550–558.CrossRefGoogle Scholar
  19. NanoRem. (2018). Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem.Google Scholar
  20. Phenrat, T., & Kumloet, I. (2016). Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Water Research, 107, 19–28.CrossRefGoogle Scholar
  21. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010a). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118, 152–164.CrossRefGoogle Scholar
  22. Phenrat, T., Schoenfelder, D., Losi, M., Yi, J., Peck, S. A., & Lowry, G. V. (2010b). Treatability study for a TCE contaminated area using nanoscale- and microscale-zerovalent iron particles: Reactivity and reactive life time. In C. L. Geiger (Ed.), Environmental applications of nanoscale and microscale reactive metal particles (pp. 183–202). Washington, DC: Oxford University Press.Google Scholar
  23. Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50, 872–880.CrossRefGoogle Scholar
  24. Srirattana, S., Piaowan, K., Lowry, G. V., & Phenrat, T. (2017). Electromagnetic induction of foam-based nanoscale zerovalent iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. Chemosphere, 183, 323–331.CrossRefGoogle Scholar
  25. Stejskal, V., Lederer, T., Kvapil, P., Slunsky, J., & Skácelová, P. (2017). NanoRem Pilot Site – Spolchemie I, Czech Republic: Nanoscale zero-valent iron remediation of chlorinated hydrocarbons. NanoRem bulletin. CL:AIRE, UK, pp. 1–8.Google Scholar
  26. Wei, Y. T., Wu, S. C., Yang, S. W., Che, C.-H., Lien, H.-L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials, 211–212, 373–380.CrossRefGoogle Scholar
  27. Zhang, M., He, F., Zhao, D., & Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Research, 45, 2401–2414.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Environmental Implications of Nanotechnology (CEINT)Carnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  4. 4.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of EngineeringNaresuan UniversityPhitsanulokThailand

Personalised recommendations