SVM and RGB-D Sensor Based Gesture Recognition for UAV Control

  • Wilbert G. AguilarEmail author
  • Bryan Cobeña
  • Guillermo Rodriguez
  • Vinicio S. Salcedo
  • Brayan Collaguazo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


This research has the purpose of allowing anyone, with or without experience handling micro aerial vehicles, to operate unmanned aerial vehicles (UAV) in a natural and intuitive way, unlike typical interfaces that need experience and knowledge in piloting to be used. To achieve this, our approach uses gesture recognition, based on machine learning with Support Vector Machine (SVM) for classification and a RGB-D sensor for the feature extraction. Tests for recognition with different Kernel-SVM and for the RGB-D sensor with different levels of light were carried out.


Machine learning Support Vector Machine Gesture recognition RGB-D sensor UAV 



This work is part of the project “Perception and localization system for autonomous navigation of rotor micro aerial vehicle in gps-denied environments, VisualNavDrone”, 2016-PIC-024, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Conflicts of Interest

The authors declare no conflict of interest.


  1. 1.
    Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). Scholar
  2. 2.
    Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)CrossRefGoogle Scholar
  3. 3.
    Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). Scholar
  4. 4.
    Limnaios, G.: Current usage of unmanned aircraft systems (UAS) and future challenges: a mission oriented simulator for UAS as a tool for design and performance evaluation. J. Comput. Model 4(1), 167–188 (2014)Google Scholar
  5. 5.
    Dickerson, L.: UAV on the rise. In: Aviation Week and Space Technology. Aerospace Source Book, vol. 166. McGraw Hill, New York (2007)Google Scholar
  6. 6.
    Visiongain: The unmanned aerial vehicles (UAV) market 2009–2019. Londres (2009)Google Scholar
  7. 7.
    Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)CrossRefGoogle Scholar
  8. 8.
    Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process 2014, 46 (2014)CrossRefGoogle Scholar
  9. 9.
    Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engineering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015). Scholar
  10. 10.
    Aguilar, W.G., et al.: Cascade classifiers and saliency maps based people detection. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part II. LNCS, vol. 10325, pp. 501–510. Springer, Cham (2017). Scholar
  11. 11.
    Aguilar, W.G., et al.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). Scholar
  12. 12.
    Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: EUSIPCO (2012)Google Scholar
  13. 13.
    Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: Cipolla, R., Battiato, S., Farinella, G. (eds.) Machine Learning for Computer Vision. Studies in Computational Intelligence. Springer, Heidelberg (2013). Scholar
  14. 14.
    Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimed. 15, 1110–1120 (2013)CrossRefGoogle Scholar
  15. 15.
    Kurtulmus, F., Kavdir, I.: Detecting corn tassels using computer vision and support vector machines. Exper. Syst. Appl. 41, 7390–7397 (2014)CrossRefGoogle Scholar
  16. 16.
    Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)CrossRefGoogle Scholar
  17. 17.
    Ibañez, R.: Evaluación de técnicas de Machine Learning para el reconocimiento de gestos corporals. In: XLIII Jornadas Argentinas de Informática e Investigación Operativa (2014)Google Scholar
  18. 18.
    Calle, J.L., Balseca, J.M., Medina, R.P.: Test Wisc IV: Una Mirada desde la herramienta kinect. Revista Vínculos 12, 157–165 (2015)Google Scholar
  19. 19.
    Aguilar, W.G., et al.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017). Scholar
  20. 20.
    Aguilar, W.G., et al.: Real-time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part II. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017). Scholar
  21. 21.
    Aguilar, W.G., et al.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017, Part III. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017). Scholar
  22. 22.
    Chang, C.-C., Lin, C.-J.: LIBSVM: Una librería para maquinas de vectores soporte (2017)Google Scholar
  23. 23.
    Mcneill, D.: Hand and Mind: What Gestures Reveal About Thought. The University of Chicago Press, Chicago (1992)Google Scholar
  24. 24.
    Quiroga, F. Reconocimiento de Gestos Dinámicos. Buenos Aires (2014)Google Scholar
  25. 25.
    Microsoft Corp. Redmond WA. Kinect for Xbox 360Google Scholar
  26. 26.
    Aguilar, W.G., Morales, S.G.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)CrossRefGoogle Scholar
  27. 27.
    Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). Scholar
  28. 28.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of CVPR (2003)Google Scholar
  29. 29.
    Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In Proceedings of CVPR (2006)Google Scholar
  30. 30.
    Carmona, E.: Tutorial sobre Máquinas de Vectores Soporte (SVM). UNED (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wilbert G. Aguilar
    • 1
    • 2
    Email author
  • Bryan Cobeña
    • 1
  • Guillermo Rodriguez
    • 1
  • Vinicio S. Salcedo
    • 1
  • Brayan Collaguazo
    • 1
  1. 1.CICTE Research CenterUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations