Defining Size Parameters for Touch Interaction in Substitutional Reality Environments

  • Christian MaiEmail author
  • Christian Valenta
  • Heinrich Hußmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


The physical support of touch interaction for a 2D interface when wearing a fully immersive head-mounted display (HMD), e.g., by using the kitchen table in a home environment, improves the user’s quality of interaction. To define interface parameters - button size, adaption over time- we conducted a user study. In two experiments with 30 participants in total, we compared the ability of the HMD user’s pointing to targets on a 2D surface without visual feedback, with visual feedback of the touched position and a real-world baseline. As a result, we give estimates for button dimensions, interaction design based on the learning curve of the user and present insights on the tested feedback modalities. We show that providing no feedback has limitations, presenting the touched position helps to increase accuracy and a head-mounted finger tracker has advantages but also comes with restrictions.


Head-mounted displays Touch interaction Pointing task Haptic feedback User interface design 


  1. 1.
    Altenhoff, B., Napieralski, P., Long, L., Bertrand, J., Pagano, C., Babu, S., Davis, T.: Effects of calibration to visual and haptic feedback on near-field depth perception in an immersive virtual environment. In: Proceedings of the ACM Symposium on Applied Perception (SAP 2012), pp. 71–78. ACM, New York, NY, USA (2012)Google Scholar
  2. 2.
    Azmandian, M., Hancock, M., Benko, H., Ofek, E., Wilson, A.: Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI 2016), pp. 1968–1979. ACM, New York, NY, USA (2016)Google Scholar
  3. 3.
    Bingham, G.: Calibration of distance and size does not calibrate shape information: comparison of dynamic monocular and static and dynamic binocular vision. Ecol. Psychol. 17(2), 55–74 (2005)CrossRefGoogle Scholar
  4. 4.
    Bingham, G., Bradley, A., Bailey, M., Vinner, R.: Accommodation, occlusion, and disparity matching are used to guide reaching: a comparison of actual versus virtual environments. J. Exper. Psychol. Hum. Percept. Perform. 27(6), 1314–1334 (2001)CrossRefGoogle Scholar
  5. 5.
    Bingham, G., Crowell, J., Todd, J.: Distortions of distance and shape are not produced by a single continuous transformation of reach space. Percept. Psychophys. 66(1), 152–169 (2004)CrossRefGoogle Scholar
  6. 6.
    Bingham, G., Zaal, F., Robin, D., Shull, A.: Distortions in definite distance and shape perception as measured by reaching without and with haptic feedback. J. Exper. Psychol. Hum. Percept. Perform. 26(4), 1436–1460 (2000)CrossRefGoogle Scholar
  7. 7.
    Bruder, G., Steinicke, F., Sturzlinger, W.: To touch or not to touch?: Comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces. In: Proceedings of the 1st Symposium on Spatial User Interaction (SUI 2013), pp. 9–16. ACM, New York, NY, USA (2013)Google Scholar
  8. 8.
    Buschek, D., Alt, F.: Touchml: A machine learning toolkit for modelling spatial touch targeting behaviour. In: Proceedings of the 20th International Conference on Intelligent User Interfaces (IUI 2015). ACM, New York, NY, USA (2015)Google Scholar
  9. 9.
    Cheng, L.P., Ofek, E., Holz, C., Benko, H., Wilson, A.: Sparse haptic proxy: Touch feedback in virtual environments using a general passive prop. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). pp. 3718–3728 (2017)Google Scholar
  10. 10.
    Creem-Regehr, S., Stefanucci, J., Thompson, W., Nash, N., McCardell, M.: Egocentric distance perception in the oculus rift (dk2). In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception (SAP 2015), pp. 47–50. ACM, New York, NY, USA (2015)Google Scholar
  11. 11.
    Desai, P., Desai, P., Ajmera, K., Mehta, K.: A review paper on oculus rift-a virtual reality headset. CoRR abs/1408.1173 (2014)Google Scholar
  12. 12.
    Ebrahimi, E., Altenhoff, B., Hartman, L., Jones, A., Babu, S., Pagano, C., Davis, T.: Effects of visual and proprioceptive information in visuo-motor calibration during a closed-loop physical reach task in immersive virtual environments. In: Proceedings of the ACM Symposium on Applied Perception (SAP 2014), pp. 103–110. ACM, New York, NY, USA (2014)Google Scholar
  13. 13.
    Ebrahimi, E., Altenhoff, B., Pagano, C., Babu, S.: Carryover effects of calibration to visual and proprioceptive information on near field distance judgments in 3d user interaction. In: 2015 IEEE Symposium on 3D User Interfaces (3DUI), pp. 97–104 (2015)Google Scholar
  14. 14.
    Harris, C.: Perceptual adaptation to inverted, reversed, and displaced vision. Psychol. Rev. 72(6), 419–444 (1965)CrossRefGoogle Scholar
  15. 15.
    Held, R.: Plasticity in sensory-motor systems. Sci. Am. 213(5), 84–94 (1965)CrossRefGoogle Scholar
  16. 16.
    Jankowski, J., Hachet, M.: Advances in interaction with 3D environments. Comput. Graph. Forum 34(1), 152–190 (2015)CrossRefGoogle Scholar
  17. 17.
    Kelly, J., Hammel, W., Siegel, Z., Sjolund, L.: Recalibration of perceived distance in virtual environments occurs rapidly and transfers asymmetrically across scale. IEEE Trans. Vis. Comput. Graph. 20(4), 588–595 (2014)CrossRefGoogle Scholar
  18. 18.
    Kennedy, R., Lane, N., Berbaum, K., Lilienthal, M.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)CrossRefGoogle Scholar
  19. 19.
    Li, J.: The benefit of being physically present. Int. J. Hum Comput Stud. 77(C), 23–37 (2015)CrossRefGoogle Scholar
  20. 20.
    Lillicrap, T., Moreno-Briseno, P., Diaz, R., Tweed, D., Troje, N., Fernandez-Ruiz, J.: Adapting to inversion of the visual field: a new twist on an old problem. Exper. Brain Res. 228(3), 327–339 (2013)CrossRefGoogle Scholar
  21. 21.
    MacKenzie, C., Iberall, T.: The Grasping Hand. In: Advances in Psychology, vol. 104. North-Holland, Amsterdam and New York (1994)Google Scholar
  22. 22.
    Naceri, A., Chellali, R.: Depth perception within peripersonal space using head-mounted display. Presence: Teleoperators Virtual Environ. 20(3), 254–272 (2011)CrossRefGoogle Scholar
  23. 23.
    Napieralski, P., Altenhoff, B., Bertrand, J., Long, L., Babu, S., Pagano, C., Kern, J., Davis, T.: Near-field distance perception in real and virtual environments using both verbal and action responses. ACM Trans. Appl. Percept. 8(3), 18:1–18:19 (2011)CrossRefGoogle Scholar
  24. 24.
    Nilsson, N., Peck, T., Bruder, G., Hodgson, E., Serafin, S., Suma, E., Whitton, M., Steinicke, F.: 15 years of research on redirected walking in immersive virtual environments. IEEE Comput. Graph. Appl. 38, 44–56 (2018)CrossRefGoogle Scholar
  25. 25.
    Pai, Y., Kunze, K.: Armswing: Using arm swings for accessible and immersive navigation in AR/VR spaces. In: Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia (MUM 2017), pp. 189–198. ACM, New York, NY, USA (2017)Google Scholar
  26. 26.
    Renner, R., Velichkovsky, B., Helmert, J.: The perception of egocentric distances in virtual environments - a review. ACM Comput. Surv. 46(2), 1–40 (2013)CrossRefGoogle Scholar
  27. 27.
    Simeone, A., Velloso, E., Gellersen, H.: Substitutional reality: Using the physical environment to design virtual reality experiences. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI 2015), pp. 3307–3316. ACM, New York, NY, USA (2015)Google Scholar
  28. 28.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. London B: Biol. Sci. 364(1535), 3549–3557 (2009)CrossRefGoogle Scholar
  29. 29.
    Sprague, D., Po, B., Booth, K.: The importance of accurate VR head registration on skilled motor performance. In: Proceedings of Graphics Interface 2006 (GI 2006), pp. 131–137. Canadian Information Processing Society, Toronto, Ont., Canada, Canada (2006)Google Scholar
  30. 30.
    Sra, M., Garrido-Jurado, S., Schmandt, C., Maes, P.: Procedurally generated virtual reality from 3D reconstructed physical space. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (VRST 2016), pp. 191–200 (2016)Google Scholar
  31. 31.
    Valkov, D., Giesler, A., Hinrichs, K.: Evaluation of depth perception for touch interaction with stereoscopic rendered objects. In: Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces (ITS 2012), pp. 21–30. ACM, New York, NY, USA (2012)Google Scholar
  32. 32.
    Valkov, D., Steinicke, F., Bruder, G., Hinrichs, K.: 2d touching of 3d stereoscopic objects. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2011), pp. 1353–1362. ACM, New York, NY, USA (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christian Mai
    • 1
    Email author
  • Christian Valenta
    • 1
  • Heinrich Hußmann
    • 1
  1. 1.LMU Munich, Media InformaticsMunichGermany

Personalised recommendations