Advertisement

Towards Assisting Interactive Reality

Interactive Reality for Education, Data Analysis and Industry
  • Ahmet Kose
  • Aleksei Tepljakov
  • Eduard Petlenkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

This paper addresses an interactive virtual reality based application of a physical environment. The application presents notable aspects for education, data analysis and industry since the physical building serves as a research and development center. As the project based on physical environment, one of the main target for the work is also concentrated to give high presence feeling for end-users. The developed application is verified in real time. We also introduced our findings in real-time data communication, detection and analysis of human behavior in immersive environment, control systems integration to VR. Data analysis part of the research is linked to human behaviors based on the perception of computational intelligence methods. The activities in immersive environment are engaged to entertaining and joyful learning approaches. Some ideas for further development are also described.

Keywords

Virtual Reality Real-time communication Human behavior Architecture modelling Intelligent systems Data analysis 

References

  1. 1.
    Oculus VR, LLC. Oculus Rift (2017). Accessed 20 Apr 2017Google Scholar
  2. 2.
    HTC Corporation. HTC Vive (2017). Accessed 20 Apr 2017Google Scholar
  3. 3.
    Kose, A., Tepljakov, A., Astapov, S.: Real-time localization and visualization of a sound source for virtual reality applications. In: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, September 2017Google Scholar
  4. 4.
    Psotka, J.: Immersive training systems: virtual reality and education and training. Instr. Sci. 23(5–6), 405–431 (1995)CrossRefGoogle Scholar
  5. 5.
    Donalek, C., Djorgovski, S.G., Cioc, A., Wang, A., Zhang, J., Lawler, E., Yeh, S., Mahabal, A., Graham, M., Drake, A., Davidoff, S., Norris, J.S., Longo, G.: Immersive and collaborative data visualization using virtual reality platforms. In: 2014 IEEE International Conference on Big Data, pp. 609–614, October 2014Google Scholar
  6. 6.
    Draganov, I.R., Boumbarov, O.L.: Investigating Oculus Rift virtual reality display applicability to medical assistive system for motor disabled patients. In: 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, pp. 751–754. IEEE (2015)Google Scholar
  7. 7.
    Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K., Thomas, B.H.: Immersive collaborative analysis of network connectivity: CAVE-style or head-mounted display? IEEE Trans. Vis. Comput. Graph. 23(1), 441–450 (2017)CrossRefGoogle Scholar
  8. 8.
    Guimaraes, E.G., Cardozo, E., Moraes, D.H., Coelho, P.R.: Design and implementation issues for modern remote laboratories. IEEE Trans. Learn. Technol. 4(2), 149–161 (2011)CrossRefGoogle Scholar
  9. 9.
    Kose, A., Petlenkov, E., Tepljakov, A., Vassiljeva, K.: Virtual reality meets intelligence in large scale architecture. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017,Part II. LNCS, vol. 10325, pp. 297–309. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60928-7_26CrossRefGoogle Scholar
  10. 10.
    Tallinn University of Technology. Mektory (2017). Accessed 20 Mar 2018Google Scholar
  11. 11.
    Epic Games. Unreal Engine. Accessed 3 June 2016Google Scholar
  12. 12.
    Torres-Ferreyros, C.M., Festini-Wendorff, M.A., Shiguihara-Juarez, P.N.: Developing a videogame using unreal engine based on a four stages methodology. In: 2016 IEEE ANDESCON, pp. 1–4. Institute of Electrical and Electronics Engineers (IEEE), October 2016Google Scholar
  13. 13.
    Autodesk Maya Software. Features (2017). Accessed 25 May 2017Google Scholar
  14. 14.
    Jing, X.: Design and implementation of 3d virtual digital campus - based on unity3d. In: 2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 187–190. Institute of Electrical and Electronics Engineers (IEEE), March 2016Google Scholar
  15. 15.
    Bresciani, S.: The design process: a visual model. In: 2015 19th International Conference on Information Visualisation, pp. 354–359. Institute of Electrical and Electronics Engineers (IEEE), July 2015Google Scholar
  16. 16.
    Unreal Engine. Creating landscapes (2017)Google Scholar
  17. 17.
    Ue4/maya lt: Set up grid in maya lt/maya to match unreal engine 4, 2008-2016Google Scholar
  18. 18.
    Jayawardena, A.N., Perera, I.: A framework for mixed reality application development: a case study on Yapahuwa archaeological site. In: 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 186–192. Institute of Electrical and Electronics Engineers (IEEE), September 2016Google Scholar
  19. 19.
    Dempsey, P.: The teardown: HTC vive virtual reality headset. Eng. Technol. 11(7), 80–81 (2016)CrossRefGoogle Scholar
  20. 20.
    Reichenbach, T., Vasiljevic, G., Kovacic, Z.: Virtual Reality Control Systems (2010)Google Scholar
  21. 21.
    Marti, P., Velasco, M., Fuertes, J.M., Camacho, A., Buttazzo, G.: Design of an embedded control system laboratory experiment. IEEE Trans. Ind. Electr. 57(10), 3297–3307 (2010)CrossRefGoogle Scholar
  22. 22.
    Dormido, R., Vargas, H., Duro, N., Sanchez, J., Dormido-Canto, S., Farias, G., Esquembre, F., Dormido, S.: Development of a web-based control laboratory for automation technicians: the three-tank system. IEEE Trans. Educ. 51(1), 35–44 (2008)CrossRefGoogle Scholar
  23. 23.
    Ionescu, C.M., Fabregas, E., Cristescu, S.M., Dormido, S., De Keyser, R.: A remote laboratory as an innovative educational tool for practicing control engineering concepts. IEEE Trans. Educ. 56(4), 436–442 (2013)CrossRefGoogle Scholar
  24. 24.
    Dormido Bencomo, S.: Control learning: present and future. Ann. Rev. Control 28(1), 115–136 (2004)CrossRefGoogle Scholar
  25. 25.
    Combefis, S., Giannakopoulou, D., Pecheur, C., Feary, M.: A formal framework for design and analysis of human-machine interaction. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1801–1808. Institute of Electrical and Electronics Engineers (IEEE), October 2011Google Scholar
  26. 26.
    Saenz, J., Chacon, J., de la Torre, L., Visioli, A., Dormido, S.: A virtual and remote lab of the two electric coupled drives system in the university network of interactive laboratories. In: 2015 American Control Conference (ACC). IEEE, July 2015Google Scholar
  27. 27.
    Liang, Y., Liu, G.-P.: Design of large scale virtual equipment for interactive HIL control system labs. IEEE Trans. Learn. Technol., 1 (2017). https://doi.org/10.1109/TLT.2017.2731772
  28. 28.
    Badesa, F.J., Morales, R., Garcia-Aracil, N.M., Sabater, J.M., Zollo, L., Papaleo, E., Guglielmelli, E.: Dynamic adaptive system for robot-assisted motion rehabilitation. IEEE Syst. J. 10(3), 984–991 (2016)CrossRefGoogle Scholar
  29. 29.
    Donner, P., Buss, M.: Cooperative swinging of complex pendulum-like objects: experimental evaluation. IEEE Trans. Robot. 32(3), 744–753 (2016)CrossRefGoogle Scholar
  30. 30.
    Khan, S., Jaffery, M.H., Hanif, A., Asif, M.R.: Teaching tool for a control systems laboratory using a quadrotor as a plant in MATLAB. IEEE Trans. Educ. 60(4), 249–256 (2017)CrossRefGoogle Scholar
  31. 31.
    Tepljakov, A., Astapov, S., Petlenkov, E., Vassiljeva, K., Draheim, D.: Sound localization and processing for inducing synesthetic experiences in virtual reality. In: 2016 15th Biennial Baltic Electronics Conference (BEC), pp. 159–162, October 2016Google Scholar
  32. 32.
    Tallinn University of Technology. Official website of Re:creation Virtual and Augmented Reality Laboratory (2018). Accessed 1 Mar 2018Google Scholar
  33. 33.
    Saenz, J., Chacon, J., De La Torre, L., Visioli, A., Dormido, S.: Open and low-cost virtual and remote labs on control engineering. IEEE Access 3, 805–814 (2015)CrossRefGoogle Scholar
  34. 34.
    Atanasijevic-Kunc, M., Logar, V., Karba, R., Papic, M., Kos, A.: Remote multivariable control design using a competition game. IEEE Trans. Educ. 54(1), 97–103 (2011)CrossRefGoogle Scholar
  35. 35.
    Wannous, M., Nakano, H.: NVLab, a networking virtual web-based laboratory that implements virtualization and virtual network computing technologies. IEEE Trans. Learn. Technol. 3(2), 129–138 (2010)CrossRefGoogle Scholar
  36. 36.
    Epic Games. Blueprints Visual Scripting (2017). Accessed 25 May 2017Google Scholar
  37. 37.
    Madhuri, D., Chenna Reddy, P.: Performance comparison of TCP, UDP and SCTP in a wired network. In: 2016 International Conference on Communication and Electronics Systems (ICCES), pp. 1–6. IEEE, October 2016Google Scholar
  38. 38.
    Kuts, V., Modoni, G.E., Terkaj, W., Tähemaa, T., Sacco, M., Otto, T.: Exploiting factory telemetry to support virtual reality simulation in robotics cell. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part I. LNCS, vol. 10324, pp. 212–221. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60922-5_16CrossRefGoogle Scholar
  39. 39.
    Kose, A., Petlenkov, E.: System identification models and using neural networks for ground source heat pump with ground temperature modeling. In: 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2016Google Scholar
  40. 40.
    Tepljakov, A., Gonzalez, E.A., Petlenkov, E., Belikov, J., Monje, C.A., Petráš, I.: Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop. ISA Trans. 60, 262–273 (2016)CrossRefGoogle Scholar
  41. 41.
    Blender Foundation. Blender 3d modeling package (2018). Accessed 25 Mar 2018Google Scholar
  42. 42.
    Leap Motion Inc., Leap Motion. Accessed 3 Feb 2018Google Scholar
  43. 43.
    Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)CrossRefGoogle Scholar
  44. 44.
    Ali, S.M., Gupta, N., Nayak, G.K., Lenka, R.K.: Big data visualization: tools and challenges. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I). IEEE, December 2016Google Scholar
  45. 45.
    Moran, A., Gadepally, V., Hubbell, M., Kepner, J.: Improving big data visual analytics with interactive virtual reality. In: 2015 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, September 2015Google Scholar
  46. 46.
    Kose, A., Petlenkov, E.: Identification, implementation and simulation of ground source heat pump with ground temperature modeling. In: 2016 15th Biennial Baltic Electronics Conference (BEC). IEEE, October 2016Google Scholar
  47. 47.
    Vassiljeva, K., Tepljakov, A., Petlenkov, E., Netsajev, E.: Computational intelligence approach for estimation of vehicle insurance risk level. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, May 2017Google Scholar
  48. 48.
    Sitzmann, V., Serrano, A., Pavel, A., Agrawala, M., Gutierrez, D., Masia, B., Wetzstein, G.: Saliency in VR: how do people explore virtual environments? IEEE Trans. Vis. Comput. Graph. 24(4), 1633–1642 (2018)CrossRefGoogle Scholar
  49. 49.
    INTECO: Official website of INTECO, LLC (2018). http://www.inteco.com.pl/. Accessed 12 Mar 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmet Kose
    • 1
  • Aleksei Tepljakov
    • 1
  • Eduard Petlenkov
    • 1
  1. 1.Department of Computer SystemsTallinn University of TechnologyTallinnEstonia

Personalised recommendations