Advertisement

Robust Motion Estimation Based on Multiple Monocular Camera for Indoor Autonomous Navigation of Micro Aerial Vehicle

  • Wilbert G. Aguilar
  • José F. Manosalvas
  • Joan A. Guillén
  • Brayan Collaguazo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

This paper is focusing on the development of a system based on computer vision to estimate the movement of an MAV (X, Y, Z and yaw). The system integrates elements such as: a set of cameras, image filtering (physical and digital), and estimation of the position through the calibration of the system and the application of an algorithm based on experimentally found equations. The system represents a low cost alternative, both computational and economic, capable of estimating the position of an MAV with a significantly low error using a scale in millimeters, so that almost any type of camera available in the market can be used. This system was developed in order to offer an affordable form of research and development of new autonomous and intelligent systems for closed environments.

Keywords

Computer vision Cameras array Quadrotor Motion estimation Path planning MAV Control system 

Notes

Acknowledgement

This work is part of the project “Perception and localization system for autonomous navigation of rotor micro aerial vehicle in gps-denied environments, VisualNavDrone”, 2016-PIC-024, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Kim, H., Park, K.-Y., Hong, J., Kang, K.: All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Sci. Rep. 4, 13 (2014)Google Scholar
  2. 2.
    Aguilar, W.G., Luna, M., Moya, J., Abad, V., Parra, H., Ruiz, H.: Pedestrian detection for UAVs using cascade classifiers with meanshift. In: 11th International Conference on Semantic Computing (ICSC), San Diego. IEEE (2017)Google Scholar
  3. 3.
    Aguilar, W.G., Luna, Marco A., Moya, Julio F., Abad, V., Ruiz, H., Parra, H., Angulo, C.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59147-6_48CrossRefGoogle Scholar
  4. 4.
    Aguilar, W.G., Angulo, C.: Real-Time Model-Based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)CrossRefGoogle Scholar
  5. 5.
    Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. Eurasip J. Image Video Process. 1, 1–13 (2014)Google Scholar
  6. 6.
    Aguilar, W.G., Luna, Marco A., Moya, Julio F., Abad, V., Ruiz, H., Parra, H., Lopez, W.: Cascade classifiers and saliency maps based people detection. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 501–510. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60928-7_42CrossRefGoogle Scholar
  7. 7.
    How, J.P., Behihke, B., Frank, A., Dale, D., Vian, J.: Real-Time indoor autonomous vehicle test environment. IEEE Control Syst. 28(2), 51–64 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Di Fulvio, G., Frontoni, E., Mancini, A., Zingaretti, P.: A stereovision system for dimensional measurements in industrial robotics applications. In: IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy (2014)Google Scholar
  9. 9.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. Exp. Robot. 31(5), 647–663 (2012)Google Scholar
  10. 10.
    Aguilar, W.G., Rodríguez, Guillermo A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-Board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65298-6_28CrossRefGoogle Scholar
  11. 11.
    Aguilar, W.G., Rodríguez, Guillermo A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59147-6_51CrossRefGoogle Scholar
  12. 12.
    Aguilar, W.G., Rodríguez, Guillermo A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-Time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60928-7_35CrossRefGoogle Scholar
  13. 13.
    Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Kyoto, Japan (2011)Google Scholar
  14. 14.
    Andriluka, M., Roth, S., Schiele, B.: Monocular 3D pose estimation and tracking by detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, USA (2010)Google Scholar
  15. 15.
    de La Gorce, M., Fleet, D.J., Paragios, N.: Model-based 3D hand pose estimation from monocular video. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1793–1805 (2011)Google Scholar
  16. 16.
    Vincent, L., Pascal, F.: Monocular model-based 3D tracking of rigid objects: a survey. Found. Trends® Comput. Graph. Vis. 1(1), 1–89 (2005)CrossRefGoogle Scholar
  17. 17.
    Aguilar, W.G., Salcedo, Vinicio S., Sandoval, David S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71011-2_8CrossRefGoogle Scholar
  18. 18.
    Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)CrossRefGoogle Scholar
  19. 19.
    Aguilar, W.G., Casaliglla, Verónica P., Pólit, José L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59147-6_49CrossRefGoogle Scholar
  20. 20.
    Aguilar, W.G., Angulo, C., Costa-Castello, R.: Autonomous navigation control for quadrotors in trajectories tracking. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 287–297. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65298-6_27CrossRefGoogle Scholar
  21. 21.
    May, S., Droschel, D., Holz, D., Fuchs, E., Malis, S., Nuchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. J. Field Robot. (JFR) 26, 11–12 (2009)Google Scholar
  22. 22.
    Konolige, K., Agrawal, M.: FrameSLAM: From bundle adjustment to real-time visual mapping. IEEE Trans. Robot. 25, 5 (2008)Google Scholar
  23. 23.
    Gold, S., Ping Lu, C., Rangarajan, A., Pappu, S., Mjolsness, E.: New algorithms for 2D and 3D point matching: pose estimation and correspondence. Patt. Recognit. 31, 1019–1031 (1999)CrossRefGoogle Scholar
  24. 24.
    Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance for low-cost UAVs. IEEE 11th International Conference on Semantic Computing (ICSC), San Diego (2017)Google Scholar
  25. 25.
    Hyondong, O., Dae-Yeon, W., Sung-Sik, H., Hyunchul, D., Tahk, M.-J., Tsourdos, A.: Indoor UAV control using multi-camera visual feedback. J. Intelligent & Robot. Syst. 61(1–4), 57–84 (2011)Google Scholar
  26. 26.
    Valenti, M., Bethke, B., Frank, D., McGrew, A., Ahrens, J., How, S., Vian, J.: The MIT indoor multi-vehicle flight testbed. IEEE International Conference Robot Automation (2007)Google Scholar
  27. 27.
    Altug, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)CrossRefGoogle Scholar
  28. 28.
    Yoshihata, Y., Watanabe, K., Iwatani, Y., Hashimoto, K.: Multi-camera visual servoing of a micro helicopter under occlusions. In: Proceedings on the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2651–2620 (2007)Google Scholar
  29. 29.
    Mak, L.C., Whitty, M., Furukawa, T.: A localization system for an indoor rotary-wing MAV using blade mounted LEDs. Sens. Rev. 28(2), 125–131 (2008)CrossRefGoogle Scholar
  30. 30.
    Garage W., Intel Corporation. OpenCV. https://opencv.org/. Accessed 20 Oct 2017
  31. 31.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library, Sebastopol (2008)Google Scholar
  32. 32.
    Aguilar, W.G., Morales, S.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)CrossRefGoogle Scholar
  33. 33.
    Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59147-6_50CrossRefGoogle Scholar
  34. 34.
    Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based path planning for virtual aerial navigation. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 176–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60922-5_13CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wilbert G. Aguilar
    • 1
    • 2
  • José F. Manosalvas
    • 1
  • Joan A. Guillén
    • 1
  • Brayan Collaguazo
    • 1
  1. 1.CICTE Research Center, Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations