Advertisement

Real–Time Virtual Reality Visualizer for Unmanned Aerial Vehicles

  • Fernando A. Chicaiza
  • Cristian Gallardo
  • Christian P. Carvajal
  • Washington X. Quevedo
  • Jaime Santana
  • Vicente Morales
  • Víctor H. Andaluz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

The visualization of tele-operated and autonomous executions in the field becomes difficult if the real environments are located in remote areas or present potential dangers for visualizing clients. This work proposes an application based on virtual reality to recreate in real time the execution tasks of a UAV, which is operated remotely or autonomously on a real environment. To achieve a third level of immersion, the reconstruction of the real environment where the field tests are executed is considered, offering the possibility of knowing the real scenario where the tests are executed. The consideration of using commercial UAV development kits is taken into account to obtain internal information, as well as to control the drone from client devices. The results presented validate the unification of 3D models and the reconstruction of the environment, as well as the consumption of vehicle information and climate parameters.

Keywords

Virtual Reality Real time visualization 3D models Reconstructed scenario 

Notes

Acknowledgments

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this paper.

References

  1. 1.
    Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nat. Int. J. Sci. 521(1), 460–466 (2015)Google Scholar
  2. 2.
    Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91(1), 99–131 (2017)CrossRefGoogle Scholar
  3. 3.
    Câmara, D.: Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios. In: Antenna Measurements & Applications (CAMA), vol. 2015(1) (2015)Google Scholar
  4. 4.
    Andaluz, V.H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27857-5_43CrossRefGoogle Scholar
  5. 5.
    Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engineering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-08422-0_66CrossRefGoogle Scholar
  6. 6.
    Daftry, S., Hoppe, C., Bischof, H.: Building with drones: accurate 3D facade reconstruction using MAVs. In: Robotics and Automation (ICRA), vol. 2015, no. 1, pp. 3487–3494 (2015)Google Scholar
  7. 7.
    Balletti, C., Guerra, F., Scocca, V., Gottardi, C.: 3D integrated methodologies for the documentation and the virtual reconstruction of an archaeological site. Digit. Heritage 5(1), 215–222 (2015)Google Scholar
  8. 8.
    Francesco, N., Fabio, R.: UAV for 3D mapping applications: a review. Appl. Geomat. 6(1), 1–15 (2014)CrossRefGoogle Scholar
  9. 9.
    Sarkar, A., Patel, K.A., Ram, R.G., Capoor, G.K.: Gesture control of drone using a motion controller. In: Industrial Informatics and Computer Systems (CIICS), vol. 2016(1), pp. 1–5 (2016)Google Scholar
  10. 10.
    Andaluz, V.H., Chicaiza, F.A., Meythaler, A., Rivas, D.R., Chuchico, C.P.: Construction of a quadcopter for autonomous and teleoperated navigation. In: Design of Circuits and Integrated Systems (DCIS), vol. 2015(1), pp. 1–7 (2015)Google Scholar
  11. 11.
    Andaluz, V.H., Quevedo, W.X., Chicaiza, F.A., Varela, J., Gallardo, C., Sánchez, J.S., Arteaga, O.: Transparency of a bilateral tele-operation scheme of a mobile manipulator robot. In: Augmented Reality, Virtual Reality, and Computer Graphics, vol. 9768, no. 1, pp. 228–245 (2016)Google Scholar
  12. 12.
    Kothari, M., Postlethwaite, I., Gu, D.-W.: UAV path following in windy urban environments. J. Intell. Robot. Syst. 74(3–4), 1013–1028 (2014)CrossRefGoogle Scholar
  13. 13.
    Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)Google Scholar
  14. 14.
    Cai, G., Chen, B.M., Dong, X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(5), 803–820 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de Las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad Técnica de AmbatoAmbatoEcuador

Personalised recommendations